Menu Close

lim-x-pi-4-pi-4x-1-sin-2x-




Question Number 143995 by liberty last updated on 20/Jun/21
  lim_(x→π/4) ((π−4x)/( (√(1−(√(sin 2x)))))) =?
limxπ/4π4x1sin2x=?
Answered by mathmax by abdo last updated on 20/Jun/21
f(x)=((π−4x)/( (√(1−(√(sin2x)))))) ⇒f(x)=_((π/4)−x=t)    ((π−4((π/4)−t))/( (√(1−(√(sin(2((π/4)−t)))))))  =((4t)/( (√(1−(√(sin((π/2)−2t)))))))=((4t)/( (√(1−(√(cos(2t)))))))=g(t)   (t→0)  cos(2t)∼1−((4t^2 )/2)=1−2t^2  ⇒(√(cos(2t)))∼(√(1−2t^2 ))∼1−(1/2)(2t^2 )=1−t^2   −(√(cos(2t)))∼t^2 −1 ⇒1−(√(cos(2t)))∼t^2  ⇒(√(1−(√(cos(2t)))))∼t ⇒  g(t)∼((4t)/t) ⇒lim_(t→0) g(t)=4
f(x)=π4x1sin2xf(x)=π4x=tπ4(π4t)1sin(2(π4t)=4t1sin(π22t)=4t1cos(2t)=g(t)(t0)cos(2t)14t22=12t2cos(2t)12t2112(2t2)=1t2cos(2t)t211cos(2t)t21cos(2t)tg(t)4ttlimt0g(t)=4
Commented by liberty last updated on 21/Jun/21
in my book the limit doesnot exist
inmybookthelimitdoesnotexist

Leave a Reply

Your email address will not be published. Required fields are marked *