Menu Close

lim-x-pi-4-x-pi-4-sin-3x-3-pi-4-2-1-sin2x-




Question Number 10374 by ridwan balatif last updated on 06/Feb/17
lim_(x→(π/4)) (((x−(π/4))sin(3x−3(π/4)))/(2(1−sin2x)))=...?
limxπ4(xπ4)sin(3x3π4)2(1sin2x)=?
Answered by mrW1 last updated on 06/Feb/17
let u=x−(π/4)  with x→(π/4), u→0  sin 2x=sin (2u+(π/2))=cos (2u)=1−2 sin^2  u    L=lim_(x→(π/4)) (((x−(π/4))sin(3x−3(π/4)))/(2(1−sin2x)))  =lim_(u→0) ((u sin (3u))/(4 sin^2  u))=lim_(u→0)  ((u×(((sin 3u)/(3u)))×3u)/(4×(((sin u)/u))^2 ×u^2 ))  =lim_(u→0) ((3×(((sin 3u)/(3u))))/(4×(((sin u)/u))^2 ))=((3×1)/(4×1^2 ))=(3/4)
letu=xπ4withxπ4,u0sin2x=sin(2u+π2)=cos(2u)=12sin2uL=limxπ4(xπ4)sin(3x3π4)2(1sin2x)=limu0usin(3u)4sin2u=limu0u×(sin3u3u)×3u4×(sinuu)2×u2=limu03×(sin3u3u)4×(sinuu)2=3×14×12=34
Commented by ridwan balatif last updated on 06/Feb/17
thank you sir
thankyousir
Answered by arge last updated on 08/Feb/17
por l′hopital,    y=(((x−(x/4))sen(3x−((12+π)/4)))/(2(1−sen2x)))    y′=((2(1−sen2x)[(x−(x/4))cos(3x−((12+π)/4))+sen(3x−((12+π)/4))(1−(1/4))]−(x−(x/4))sen(3x−((12+π)/4))×2(−cos2x))/(4(1−2sen2x+4sen^2 xcos^2 x)))    y′=(A/0)    A=_   −134.65, y′=∞∵∵∵∵∵Rta
porlhopital,y=(xx4)sen(3x12+π4)2(1sen2x)y=2(1sen2x)[(xx4)cos(3x12+π4)+sen(3x12+π4)(114)](xx4)sen(3x12+π4)×2(cos2x)4(12sen2x+4sen2xcos2x)y=A0A=134.65,y=∵∵∵∵∵Rta
Answered by bahmanfeshki last updated on 02/Mar/17
1−sin 2x=(sin x+cos x)^2 =2sin^2  (x+(π/4))  x+(π/4)=t  lim_(t→0)  ((tsin 3t)/(4sin^2 t))=(3/4)lim_(t→0) (((sin 3t)/(3t))/((((sin t)/t))^2 ))=(3/4)
1sin2x=(sinx+cosx)2=2sin2(x+π4)x+π4=tlimt0tsin3t4sin2t=34limt0sin3t3t(sintt)2=34

Leave a Reply

Your email address will not be published. Required fields are marked *