Menu Close

lim-x-x-1-1-3-x-1-




Question Number 143013 by Study last updated on 08/Jun/21
lim_(x→∞) (((x+1))^(1/3) /(x+1))=?
$${li}\underset{{x}\rightarrow\infty} {{m}}\frac{\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}}{{x}+\mathrm{1}}=? \\ $$
Commented by Study last updated on 08/Jun/21
what is the practice?
$${what}\:{is}\:{the}\:{practice}? \\ $$
Commented by Dwaipayan Shikari last updated on 08/Jun/21
0
$$\mathrm{0} \\ $$
Commented by Dwaipayan Shikari last updated on 08/Jun/21
(((x+1))^(1/3) /(x+1))  =(1/((x+1)^(2/3) ))    x is very large so (1/((x+1)^(2/3) ))→0
$$\frac{\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}}{{x}+\mathrm{1}}\:\:=\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}/\mathrm{3}} }\:\: \\ $$$${x}\:{is}\:{very}\:{large}\:{so}\:\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}/\mathrm{3}} }\rightarrow\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *