Menu Close

lim-x-x-1-x-2-1-1-




Question Number 141356 by physicstutes last updated on 17/May/21
lim_(x→+∞) (((x+1)/( (√(x^2 +1)))) −1)
limx+(x+1x2+11)
Answered by bemath last updated on 18/May/21
lim_(x→∞)  (((x+1−(√(x^2 +1)))/( (√(x^2 +1)))))=  lim_(x→∞) (((x(1+(1/x)−(√(1+(1/x^2 )))))/(x(√(1+(1/x^2 ))))))=  lim_(x→∞) (((1+(1/x)−(√(1+(1/x^2 ))))/( (√(1+(1/x^2 ))))))= 0
limx(x+1x2+1x2+1)=limx(x(1+1x1+1x2)x1+1x2)=limx(1+1x1+1x21+1x2)=0
Answered by Mathspace last updated on 18/May/21
f(x)=((x+1)/( (√(x^2 +1))))−1 ⇒for x>0  f(x)=((1+(1/x))/( (√(1+(1/x^2 )))))−1  ⇒f(x)∼((1+(1/x))/(1+(1/(2x^2 ))))−1  f(x)∼(1+(1/x))(1−(1/(2x^2 )))−1  =1−(1/(2x^2 ))+(1/x)−(1/(2x^3 ))−1 ⇒  f(x)∼(1/x)−(1/(2x^2 ))→0  (x→+∞) ⇒  lim_(x→+∞) f(x)=0
f(x)=x+1x2+11forx>0f(x)=1+1x1+1x21f(x)1+1x1+12x21f(x)(1+1x)(112x2)1=112x2+1x12x31f(x)1x12x20(x+)limx+f(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *