Menu Close

lim-x-x-k-e-4x-k-gt-0-




Question Number 76151 by Rio Michael last updated on 24/Dec/19
lim_(x→∞)  x^k e^(−4x) , k>0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{{k}} {e}^{−\mathrm{4}{x}} ,\:{k}>\mathrm{0} \\ $$
Commented by kaivan.ahmadi last updated on 24/Dec/19
lim_(x−→∞) (x^k /e^(4x) )=0
$${lim}_{{x}−\rightarrow\infty} \frac{{x}^{{k}} }{{e}^{\mathrm{4}{x}} }=\mathrm{0} \\ $$
Commented by kaivan.ahmadi last updated on 24/Dec/19
by k+1 derivation the x^(k  ) is 0
$${by}\:{k}+\mathrm{1}\:{derivation}\:{the}\:{x}^{{k}\:\:} {is}\:\mathrm{0} \\ $$
Commented by kaivan.ahmadi last updated on 24/Dec/19
lim_(x→∞) (0/(4^(k+1) e^(4x) ))=0
$${lim}_{{x}\rightarrow\infty} \frac{\mathrm{0}}{\mathrm{4}^{{k}+\mathrm{1}} {e}^{\mathrm{4}{x}} }=\mathrm{0} \\ $$
Commented by Rio Michael last updated on 24/Dec/19
thanks
$${thanks} \\ $$
Commented by mr W last updated on 24/Dec/19
if k is no integer, k+1 th derivation  is not zero.
$${if}\:{k}\:{is}\:{no}\:{integer},\:{k}+\mathrm{1}\:{th}\:{derivation} \\ $$$${is}\:{not}\:{zero}. \\ $$
Commented by benjo last updated on 24/Dec/19
yes sir. i agree
$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{agree} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *