Menu Close

lim-x-x-x-2-ln-1-1-x-




Question Number 72398 by 20190927 last updated on 28/Oct/19
lim_(x→∞) [x−x^2 ln(1+(1/x))]
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\mathrm{x}−\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)\right] \\ $$
Commented by mathmax by abdo last updated on 28/Oct/19
let f(x)=x−x^2 ln(1+(1/x))  we have ln^′ (1+u)=(1/(1+u)) =1−u +u^2  +o(u^3 ) ⇒  ln(1+u)=u−(u^2 /2) +(u^3 /3) +o(u^4 )   (u→0) ⇒  ln(1+(1/x))=(1/x)−(1/(2x^2 )) +(1/(3x^3 )) +o((1/x^4 )) (x→+∞) ⇒  x^2 ln(1+(1/x))=x−(1/2) +(1/(3x)) +o((1/x^2 )) ⇒x−x^2 ln(1+(1/x))  =x−x+(1/2)−(1/(3x)) +o((1/x^2 )) ⇒f(x)∼(1/2)−(1/(3x))   (x→+∞)   ⇒lim_(x→+∞)  f(x)=(1/2)
$${let}\:{f}\left({x}\right)={x}−{x}^{\mathrm{2}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\:\:{we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{u}\right)=\frac{\mathrm{1}}{\mathrm{1}+{u}}\:=\mathrm{1}−{u}\:+{u}^{\mathrm{2}} \:+{o}\left({u}^{\mathrm{3}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{u}\right)={u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{u}^{\mathrm{3}} }{\mathrm{3}}\:+{o}\left({u}^{\mathrm{4}} \right)\:\:\:\left({u}\rightarrow\mathrm{0}\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)=\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{3}} }\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)\:\left({x}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${x}^{\mathrm{2}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)={x}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:\Rightarrow{x}−{x}^{\mathrm{2}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$={x}−{x}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:\Rightarrow{f}\left({x}\right)\sim\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}{x}}\:\:\:\left({x}\rightarrow+\infty\right)\: \\ $$$$\Rightarrow{lim}_{{x}\rightarrow+\infty} \:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mathmax by abdo last updated on 28/Oct/19
the same result at −∞
$${the}\:{same}\:{result}\:{at}\:−\infty \\ $$
Commented by 20190927 last updated on 28/Oct/19
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 28/Oct/19
you are welcome.
$${you}\:{are}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *