Menu Close

lim-x-x-x-x-1-x-




Question Number 142329 by HarshSahu last updated on 30/May/21
 lim_(x→∞)  (((x!)/x^x ))^(1/x)
limx(x!xx)1x
Answered by Dwaipayan Shikari last updated on 30/May/21
(((x!)/x^x ))^(1/x) =y  (1/x)log(x!/x^x )=log(y)  lim_(x→∞) (1/x)Σ_(r=1) ^x log((r/x))=log(y)  ∫_0 ^1 log(t)dt=log(y)⇒−1=log(y)⇒y=(1/e)
(x!xx)1x=y1xlog(x!/xx)=log(y)limx1xxr=1log(rx)=log(y)01log(t)dt=log(y)1=log(y)y=1e
Answered by MJS_new last updated on 30/May/21
(((x!)/x^x ))^(1/x) =(((x!)^(1/x) )/x)=(((((x/e))^x (√(2πx)))^(1/x) )/x)=(((x/e)((2πx))^(1/(2x)) )/x)=  =(((2πx))^(1/(2x)) /e)  lim_(x→∞) (((2πx))^(1/(2x)) /e) =(1/e)
(x!xx)1/x=(x!)1/xx=((xe)x2πx)1/xx=xe2πx2xx==2πx2xelimx2πx2xe=1e
Commented by greg_ed last updated on 31/May/21
ok !
ok!

Leave a Reply

Your email address will not be published. Required fields are marked *