Menu Close

Limit-3-n-1-5-n-1-3-n-5-n-x-Please-help-Thanks-




Question Number 5637 by sanusihammed last updated on 23/May/16
Limit   [((3^(n+1)  − 5^(n+1) )/(3^n  − 5^n ))]  x→∞      Please help. Thanks
$${Limit}\:\:\:\left[\frac{\mathrm{3}^{{n}+\mathrm{1}} \:−\:\mathrm{5}^{{n}+\mathrm{1}} }{\mathrm{3}^{{n}} \:−\:\mathrm{5}^{{n}} }\right] \\ $$$${x}\rightarrow\infty \\ $$$$ \\ $$$$ \\ $$$${Please}\:{help}.\:{Thanks} \\ $$
Answered by Yozzii last updated on 23/May/16
lim_(x→∞) (((3^(x+1) −5^(x+1) )/(3^x −5^x )))=lim_(x→∞) ((((3/5))^x ×3−5)/(((3/5))^x −1))                                   =((lim_(x→∞) {3(3/5)^x −5})/(lim_(x→∞) {(3/5)^x −1}))                                   =((3×0−5)/(0−1))                                   =5
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{3}^{{x}+\mathrm{1}} −\mathrm{5}^{{x}+\mathrm{1}} }{\mathrm{3}^{{x}} −\mathrm{5}^{{x}} }\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{x}} ×\mathrm{3}−\mathrm{5}}{\left(\frac{\mathrm{3}}{\mathrm{5}}\right)^{{x}} −\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{\mathrm{3}\left(\mathrm{3}/\mathrm{5}\right)^{{x}} −\mathrm{5}\right\}}{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{\left(\mathrm{3}/\mathrm{5}\right)^{{x}} −\mathrm{1}\right\}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{3}×\mathrm{0}−\mathrm{5}}{\mathrm{0}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{5} \\ $$
Commented by Rasheed Soomro last updated on 23/May/16
NiCE!
$$\mathcal{N}{i}\mathcal{CE}! \\ $$
Commented by sanusihammed last updated on 23/May/16
Thanks so much for your time
$${Thanks}\:{so}\:{much}\:{for}\:{your}\:{time} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *