Menu Close

limit-x-1-1-x-x-2-




Question Number 2478 by Syaka last updated on 21/Nov/15
limit x → ∞  (1 + (1/x))^(x + 2)  = ?
limitx(1+1x)x+2=?
Commented by John_Haha last updated on 21/Nov/15
e
e
Answered by Yozzi last updated on 21/Nov/15
L=lim_(x→∞) (1+(1/x))^(x+2) =lim_(x→∞) (1+(1/x))^2 (1+(1/x))^x   L=(lim_(x→∞) (1+(1/x))^2 )(lim_(x→∞) (1+(1/x))^x )  L=((1+(1/∞))^2 )(e)  L=1^2 ×e=e    Proof for lim_(x→∞) (1+1/x)^x =e  Let l=lim_(x→∞) (1+1/x)^x   (∗).  (1+1/x)^x >0 ∀x>0 so if l exists, l>0.  Taking logs to base e on both sides of (∗).  lnl=lim_(x→∞) ln(1+1/x)^x   lnl=lim_(x→∞) xln(1+(1/x))  Let u=1/x⇒as x→∞,u→0.  ∴lnl=lim_(u→0) (1/u)ln(1+u)  Using the Maclaurin expansion for  ln(1+u)=u−(u^2 /2)+(u^3 /3)−(u^4 /4)+(u^5 /5)−...   −1<u≤1  ⇒lnl=lim_(u→0) (1/u)(u−(u^2 /2)+(u^3 /3)−(u^4 /4)+(u^5 /5)−...)  lnl=lim_(u→0) (1−(u/2)+(u^2 /3)−(u^3 /4)+(u^4 /5)−...)  lnl=1−0+0−0+0−...  lnl=1⇒l=e  ∴ lim_(x→∞) (1+(1/x))^x =e
L=limx(1+1x)x+2=limx(1+1x)2(1+1x)xL=(limx(1+1x)2)(limx(1+1x)x)L=((1+1)2)(e)L=12×e=eProofforlimx(1+1/x)x=eLetl=limx(1+1/x)x().(1+1/x)x>0x>0soiflexists,l>0.Takinglogstobaseeonbothsidesof().lnl=limxln(1+1/x)xlnl=limxxln(1+1x)Letu=1/xasx,u0.lnl=limu01uln(1+u)UsingtheMaclaurinexpansionforln(1+u)=uu22+u33u44+u551<u1lnl=limu01u(uu22+u33u44+u55)lnl=limu0(1u2+u23u34+u45)lnl=10+00+0lnl=1l=elimx(1+1x)x=e

Leave a Reply

Your email address will not be published. Required fields are marked *