limit-x-1-1-x-x-2- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 2478 by Syaka last updated on 21/Nov/15 limitx→∞(1+1x)x+2=? Commented by John_Haha last updated on 21/Nov/15 e Answered by Yozzi last updated on 21/Nov/15 L=limx→∞(1+1x)x+2=limx→∞(1+1x)2(1+1x)xL=(limx→∞(1+1x)2)(limx→∞(1+1x)x)L=((1+1∞)2)(e)L=12×e=eProofforlimx→∞(1+1/x)x=eLetl=limx→∞(1+1/x)x(∗).(1+1/x)x>0∀x>0soiflexists,l>0.Takinglogstobaseeonbothsidesof(∗).lnl=limx→∞ln(1+1/x)xlnl=limx→∞xln(1+1x)Letu=1/x⇒asx→∞,u→0.∴lnl=limu→01uln(1+u)UsingtheMaclaurinexpansionforln(1+u)=u−u22+u33−u44+u55−…−1<u⩽1⇒lnl=limu→01u(u−u22+u33−u44+u55−…)lnl=limu→0(1−u2+u23−u34+u45−…)lnl=1−0+0−0+0−…lnl=1⇒l=e∴limx→∞(1+1x)x=e Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-3-9-x-2-dx-a-13-5-b-21-c-22-5-d-1-8-e-30-Next Next post: 2014-2013-2014-2013-2012-2011-2014-2013-2012-2011-2010-2009-2014-2013-2012-2011-2010-2009-2008-2007-4-3-2-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.