Menu Close

ln-tan-1-x-dx-




Question Number 136922 by malwan last updated on 27/Mar/21
∫ ln∣tan^(−1) x∣ dx = ?
$$\int\:{ln}\mid{tan}^{−\mathrm{1}} {x}\mid\:{dx}\:=\:? \\ $$
Answered by Olaf last updated on 27/Mar/21
F(x) = ∫ln∣atanx∣ dx  Let u = atanx  F(u) = ∫ln∣u∣(1+tan^2 u) du  F(u) = ln∣u∣tanu−∫((tanu)/u) du  tanu = Σ_(n=1) ^∞ ((2^(2n) (2^(2n) −1)B_(2n) )/((2n)!))u^(2n−1)   F(u) = ln∣u∣tanu−∫Σ_(n=1) ^∞  ((2^(2n) (2^(2n) −1)B_(2n) )/((2n)!))u^(2n−2) du  F(u) = ln∣u∣tanu−Σ_(n=1) ^∞  ((2^(2n) (2^(2n) −1)B_(2n) )/((2n−1)(2n)!))u^(2n−1)   F(x) = xln∣atanx∣−Σ_(n=1) ^∞  ((2^(2n) (2^(2n) −1)B_(2n) )/((2n−1)(2n)!))atan^(2n−1) x
$$\mathrm{F}\left({x}\right)\:=\:\int\mathrm{ln}\mid\mathrm{atan}{x}\mid\:{dx} \\ $$$$\mathrm{Let}\:{u}\:=\:\mathrm{atan}{x} \\ $$$$\mathrm{F}\left({u}\right)\:=\:\int\mathrm{ln}\mid{u}\mid\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {u}\right)\:{du} \\ $$$$\mathrm{F}\left({u}\right)\:=\:\mathrm{ln}\mid{u}\mid\mathrm{tan}{u}−\int\frac{\mathrm{tan}{u}}{{u}}\:{du} \\ $$$$\mathrm{tan}{u}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{\mathrm{2}{n}} \left(\mathrm{2}^{\mathrm{2}{n}} −\mathrm{1}\right){B}_{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}{u}^{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\mathrm{F}\left({u}\right)\:=\:\mathrm{ln}\mid{u}\mid\mathrm{tan}{u}−\int\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}^{\mathrm{2}{n}} \left(\mathrm{2}^{\mathrm{2}{n}} −\mathrm{1}\right){B}_{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}{u}^{\mathrm{2}{n}−\mathrm{2}} {du} \\ $$$$\mathrm{F}\left({u}\right)\:=\:\mathrm{ln}\mid{u}\mid\mathrm{tan}{u}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}^{\mathrm{2}{n}} \left(\mathrm{2}^{\mathrm{2}{n}} −\mathrm{1}\right){B}_{\mathrm{2}{n}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)!}{u}^{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\mathrm{F}\left({x}\right)\:=\:{x}\mathrm{ln}\mid\mathrm{atan}{x}\mid−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}^{\mathrm{2}{n}} \left(\mathrm{2}^{\mathrm{2}{n}} −\mathrm{1}\right){B}_{\mathrm{2}{n}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)!}\mathrm{atan}^{\mathrm{2}{n}−\mathrm{1}} {x} \\ $$
Commented by malwan last updated on 28/Mar/21
thank you so much sir
$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *