Menu Close

ln2x-ln4x-dx-x-




Question Number 70483 by Mikaell last updated on 04/Oct/19
∫((ln2x)/(ln4x)).(dx/x)
ln2xln4x.dxx
Commented by peter frank last updated on 04/Oct/19
thankx
thankx
Commented by kaivan.ahmadi last updated on 04/Oct/19
u=lnx⇒du=(dx/x)  ln2x=ln2+lnx=u+ln2  ln4x=ln4+lnx=u+ln4  ⇒∫((u+ln2)/(u+ln4))du=∫((udu)/(u+ln4))+∫((ln2du)/(u+ln4))=  ∫(1−((ln4)/(u+ln4)))du+ln2∫(du/(u+ln4))=  u−ln4ln(u+ln4)+ln2ln(u+ln4)+C=  u+(ln2−ln4)ln(u+ln4)+C=  u−ln2ln(u+ln4)+C=lnx−ln2ln(lnx+ln4)+C=  lnx−ln2ln(ln4x)+C
u=lnxdu=dxxln2x=ln2+lnx=u+ln2ln4x=ln4+lnx=u+ln4u+ln2u+ln4du=uduu+ln4+ln2duu+ln4=(1ln4u+ln4)du+ln2duu+ln4=uln4ln(u+ln4)+ln2ln(u+ln4)+C=u+(ln2ln4)ln(u+ln4)+C=uln2ln(u+ln4)+C=lnxln2ln(lnx+ln4)+C=lnxln2ln(ln4x)+C
Commented by Mikaell last updated on 04/Oct/19
thank you Sir
thankyouSir
Answered by Tanmay chaudhury last updated on 04/Oct/19
lnx=t→(dt/dx)=(1/x)  ∫((ln2+lnx)/(2ln2+lnx))×(dx/x)  ∫((ln2+t)/(2ln2+t))×dt  (1/4)∫((2ln2+t+t)/(2ln2+t))dt  (1/4)∫dt+(1/4)∫((2ln2+t−2ln2)/(2ln2+t))dt  (1/2)∫dt−((ln2)/2)∫(dt/(2ln2+t))  (t/2)−((ln2)/2)ln(2ln2+t)+C  ((lnx)/2)−((ln2)/2)ln(2ln2+lnx)+c
lnx=tdtdx=1xln2+lnx2ln2+lnx×dxxln2+t2ln2+t×dt142ln2+t+t2ln2+tdt14dt+142ln2+t2ln22ln2+tdt12dtln22dt2ln2+tt2ln22ln(2ln2+t)+Clnx2ln22ln(2ln2+lnx)+c
Commented by peter frank last updated on 04/Oct/19
thanx
thanx
Commented by Mikaell last updated on 04/Oct/19
thank you Sir
thankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *