Menu Close

Lobachevsky-Integral-0-sin-2-tan-x-x-2-dx-pi-2-




Question Number 143051 by mnjuly1970 last updated on 09/Jun/21
       _(∗∗∗∗∗) ::  Lobachevsky Integral ::_(∗∗∗∗∗)            𝛗:=∫_0 ^( ∞) ((sin^2 ( tan(x)))/x^( 2) )dx=^? (π/2)      ..........
::LobachevskyIntegral::\boldsymbolϕ:=0sin2(tan(x))x2dx=?π2.
Answered by Olaf_Thorendsen last updated on 09/Jun/21
Let f(x) = ((sin^2 (tanx))/(sin^2 x))  φ = ∫_0 ^∞ ((sin^2 (tanx))/x^2 ) dx  φ = ∫_0 ^∞ ((sin^2 (x))/x^2 )f(x) dx  ∀ x≥0 f is a continuous function  satisfying the π−periodic assumption  f(x+π) = f(x), and f(x−π) = f(x).    We can apply the Lobatchevsky′s  Dirichlet integral formula :  ∫_0 ^∞ ((sin^2 x)/x^2 )f(x)dx = ∫_0 ^∞ ((sinx)/x)f(x)dx = ∫_0 ^(π/2) f(x)dx  φ = ∫_0 ^(π/2) ((sin^2 (tanx))/(sin^2 x))dx  Let u = tanx  φ = ∫_0 ^∞ ((sin^2 u)/(sin^2 (arctanu))).(du/(1+u^2 ))  φ = ∫_0 ^∞ ((sin^2 u)/(1−cos^2 (arctanu))).(du/(1+u^2 ))  φ = ∫_0 ^∞ ((sin^2 u)/(1−(1/(1+tan^2 (arctanu))))).(du/(1+u^2 ))  φ = ∫_0 ^∞ ((sin^2 u)/(1−(1/(1+u^2 )))).(du/(1+u^2 ))  φ = ∫_0 ^∞ ((sin^2 u)/u^2 ) du  Let g(u) = 1 (constant function unity)  φ = ∫_0 ^∞ ((sin^2 u)/u^2 )g(u)du = ∫_0 ^∞ ((sinu)/u)g(u)du = ∫_0 ^(π/2) g(u)du  φ = ∫_0 ^(π/2) 1.du = (π/2)
Letf(x)=sin2(tanx)sin2xϕ=0sin2(tanx)x2dxϕ=0sin2(x)x2f(x)dxx0fisacontinuousfunctionsatisfyingtheπperiodicassumptionf(x+π)=f(x),andf(xπ)=f(x).WecanapplytheLobatchevskysDirichletintegralformula:0sin2xx2f(x)dx=0sinxxf(x)dx=0π2f(x)dxϕ=0π2sin2(tanx)sin2xdxLetu=tanxϕ=0sin2usin2(arctanu).du1+u2ϕ=0sin2u1cos2(arctanu).du1+u2ϕ=0sin2u111+tan2(arctanu).du1+u2ϕ=0sin2u111+u2.du1+u2ϕ=0sin2uu2duLetg(u)=1(constantfunctionunity)ϕ=0sin2uu2g(u)du=0sinuug(u)du=0π2g(u)duϕ=0π21.du=π2
Commented by mnjuly1970 last updated on 09/Jun/21
  thanks alot mr olaf....
thanksalotmrolaf.thanksalotmrolaf.

Leave a Reply

Your email address will not be published. Required fields are marked *