Lobachevsky-Integral-0-sin-2-tan-x-x-2-dx-pi-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 143051 by mnjuly1970 last updated on 09/Jun/21 ∗∗∗∗∗::LobachevskyIntegral::∗∗∗∗∗\boldsymbolϕ:=∫0∞sin2(tan(x))x2dx=?π2………. Answered by Olaf_Thorendsen last updated on 09/Jun/21 Letf(x)=sin2(tanx)sin2xϕ=∫0∞sin2(tanx)x2dxϕ=∫0∞sin2(x)x2f(x)dx∀x⩾0fisacontinuousfunctionsatisfyingtheπ−periodicassumptionf(x+π)=f(x),andf(x−π)=f(x).WecanapplytheLobatchevsky′sDirichletintegralformula:∫0∞sin2xx2f(x)dx=∫0∞sinxxf(x)dx=∫0π2f(x)dxϕ=∫0π2sin2(tanx)sin2xdxLetu=tanxϕ=∫0∞sin2usin2(arctanu).du1+u2ϕ=∫0∞sin2u1−cos2(arctanu).du1+u2ϕ=∫0∞sin2u1−11+tan2(arctanu).du1+u2ϕ=∫0∞sin2u1−11+u2.du1+u2ϕ=∫0∞sin2uu2duLetg(u)=1(constantfunctionunity)ϕ=∫0∞sin2uu2g(u)du=∫0∞sinuug(u)du=∫0π2g(u)duϕ=∫0π21.du=π2 Commented by mnjuly1970 last updated on 09/Jun/21 thanksalotmrolaf….thanksalotmrolaf…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-77513Next Next post: Question-77514 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.