Question Number 143051 by mnjuly1970 last updated on 09/Jun/21
$$\:\:\:\:\:\:\:_{\ast\ast\ast\ast\ast} ::\:\:{Lobachevsky}\:{Integral}\:::_{\ast\ast\ast\ast\ast} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{s}{in}^{\mathrm{2}} \left(\:{tan}\left({x}\right)\right)}{{x}^{\:\mathrm{2}} }{dx}\overset{?} {=}\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:………. \\ $$
Answered by Olaf_Thorendsen last updated on 09/Jun/21
$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{tan}{x}\right)}{\mathrm{sin}^{\mathrm{2}} {x}} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{tan}{x}\right)}{{x}^{\mathrm{2}} }\:{dx} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{f}\left({x}\right)\:{dx} \\ $$$$\forall\:{x}\geqslant\mathrm{0}\:{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\pi−\mathrm{periodic}\:\mathrm{assumption} \\ $$$${f}\left({x}+\pi\right)\:=\:{f}\left({x}\right),\:\mathrm{and}\:{f}\left({x}−\pi\right)\:=\:{f}\left({x}\right). \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{apply}\:\mathrm{the}\:\mathrm{Lobatchevsky}'\mathrm{s} \\ $$$$\mathrm{Dirichlet}\:\mathrm{integral}\:\mathrm{formula}\:: \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }{f}\left({x}\right){dx}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{x}}{{x}}{f}\left({x}\right){dx}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left({x}\right){dx} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{tan}{x}\right)}{\mathrm{sin}^{\mathrm{2}} {x}}{dx} \\ $$$$\mathrm{Let}\:{u}\:=\:\mathrm{tan}{x} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{arctan}{u}\right)}.\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \left(\mathrm{arctan}{u}\right)}.\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left(\mathrm{arctan}{u}\right)}}.\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }}.\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{{u}^{\mathrm{2}} }\:{du} \\ $$$$\mathrm{Let}\:{g}\left({u}\right)\:=\:\mathrm{1}\:\left(\mathrm{constant}\:\mathrm{function}\:\mathrm{unity}\right) \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{2}} {u}}{{u}^{\mathrm{2}} }{g}\left({u}\right){du}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{u}}{{u}}{g}\left({u}\right){du}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {g}\left({u}\right){du} \\ $$$$\phi\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{1}.{du}\:=\:\frac{\pi}{\mathrm{2}} \\ $$
Commented by mnjuly1970 last updated on 09/Jun/21
$$\:\:{thanks}\:{alot}\:{mr}\:{olaf}…. \\ $$