Menu Close

log-2-x-2-4-x-2-dx-




Question Number 143783 by mnjuly1970 last updated on 18/Jun/21
          Ω :=∫_(−∞) ^( ∞) ((log(2+x^( 2) ))/(4+x^( 2) ))dx=?
Ω:=log(2+x2)4+x2dx=?
Answered by mindispower last updated on 18/Jun/21
f(a)=∫_(−∞) ^∞ ((ln(2+2ax^2 ))/(4+x^2 )),a≥0  f′(a)=∫_(−∞) ^∞ ((2x^2 )/((4+x^2 )(2+2ax^2 )))  by residue theorem  f′(a)=2iπ.(((2(2i)^2 )/(2.2i(2+2a.(2i)^2 )))+((2.(((−1)/a)))/((4−(1/a)).4a.(i/( (√a)))))  =2iπ(.((−8)/(4i(2−8a)))−(2/((4a−1).4i(√a))))  =((2π)/(4a−1))−(π/((4a−1)(√a)))  f(a)=(π/2)ln∣4a−1∣+π∫((dx/(2x+1))−(1/(2x−1)))  =(π/2)ln∣4a−1∣+(π/2)ln∣((2(√a)+1)/(2(√a)−1))∣+c  f(0)=c=∫((ln(2))/(4+x^2 ))dx= ((ln(2))/2) arctan(x)]_(−∞) ^∞ =((ln(2)π)/2)  (π/2)ln∣4a+4(√a)+1∣+((ln(2)π)/2)=f(a)  Ω=f((1/2))=(π/2)ln(6+4(√2))≃3,85
f(a)=ln(2+2ax2)4+x2,a0f(a)=2x2(4+x2)(2+2ax2)byresiduetheoremf(a)=2iπ.(2(2i)22.2i(2+2a.(2i)2)+2.(1a)(41a).4a.ia=2iπ(.84i(28a)2(4a1).4ia)=2π4a1π(4a1)af(a)=π2ln4a1+π(dx2x+112x1)=π2ln4a1+π2ln2a+12a1+cMissing \left or extra \rightπ2ln4a+4a+1+ln(2)π2=f(a)Ω=f(12)=π2ln(6+42)3,85
Commented by mnjuly1970 last updated on 18/Jun/21
thanks alot...
thanksalot
Commented by mindispower last updated on 18/Jun/21
withe pleasur
withepleasur
Answered by mnjuly1970 last updated on 18/Jun/21
Answered by mnjuly1970 last updated on 18/Jun/21
Answered by mathmax by abdo last updated on 18/Jun/21
Φ=∫_(−∞) ^(+∞)  ((log(2+x^2 ))/(4+x^2 ))dx ⇒Φ=_(x=2t)   ∫_(−∞) ^(+∞)  ((log(2+4t^2 ))/(4(1+t^2 )))(2dt)  =(1/2) ∫_(−∞) ^(+∞)  ((log2 +log(1+2t^2 ))/(1+t^2 ))dt  =(1/2)log2 [arctant]_(−∞) ^(+∞)  +(1/2)∫_(−∞) ^(+∞)  ((log(2t^2  +1))/(t^2  +1))dt  =πlog2 +(1/2)∫_(−∞) ^(+∞)  ((log(2t^2 +1))/(t^2  +1))dt  ϕ(a)=∫_(−∞) ^(+∞)  ((log(2t^2  +a))/(t^2  +1))dt      (a>0) ⇒  ϕ^′ (a)=∫_(−∞) ^(+∞)  (1/((t^2  +1)(2t^2  +a)))dt  =(1/2)∫_(−∞) ^(+∞)  (dt/((t^2  +1)(t^2 +((√(a/2)))^2 )))  =(1/2)2iπ{Res(ϕ^∼   ,i) +Res(ϕ^∼  ,i(√(a/2)))}  ϕ^∼ (z)=(1/((z−i)(z+i)(z−i(√(a/2)))(z+i(√(a/2)))))  Res(ϕ,i)=(1/(2i(−1+(a/2))))  Res(ϕ^∼ ,i(√(a/2)))=(1/(((a/2)+1)2i(√(a/2)))) ⇒  ϕ^′ (a)=iπ{(1/(2i((a/2)−1)))+(1/(2i((a/2)+1)(√(a/2))))}  =(π/(a−2)) +(π/((a+2)(√(a/2)))) ⇒  ϕ(a)=πlog∣a−2∣ +π∫  (da/((a+2)(√(a/2))))  +K  ∫   (da/((a+2)(√(a/2)))) =_((√(a/2))=t)   ∫     ((4tdt)/((2t^2 +2)t))             (a=2t^2 )  =4∫ (dt/(2t^2  +2))=2 ∫  (dt/(t^2  +1))=2arctan((√(a/2))) ⇒  ϕ(a)=πlog∣a−2∣+2π arctan((√(a/2))) +K  ϕ(o)=∫_(−∞) ^(+∞)  ((log(2t^2 ))/(t^2  +1))dt =2∫_0 ^∞  ((log2+2logt)/(t^2  +1))dt  =2log2 ×(π/2)+4∫_0 ^∞  ((logt)/(1+t^2 ))dt=πlog2 +0=πlog2+K ⇒K=0  ϕ(a)=πlog∣a−2∣+2πarctan((√(a/2)))  ϕ(1)=2πarctan((1/( (√2)))) ⇒  Φ=πlog2 +π arctan((1/( (√2)))) =πlog2+π((π/2)−arctan(√2))  =πlog2+(π^2 /2)−π arctan((√2))
Φ=+log(2+x2)4+x2dxΦ=x=2t+log(2+4t2)4(1+t2)(2dt)=12+log2+log(1+2t2)1+t2dt=12log2[arctant]++12+log(2t2+1)t2+1dt=πlog2+12+log(2t2+1)t2+1dtφ(a)=+log(2t2+a)t2+1dt(a>0)φ(a)=+1(t2+1)(2t2+a)dt=12+dt(t2+1)(t2+(a2)2)=122iπ{Res(φ,i)+Res(φ,ia2)}φ(z)=1(zi)(z+i)(zia2)(z+ia2)Res(φ,i)=12i(1+a2)Res(φ,ia2)=1(a2+1)2ia2φ(a)=iπ{12i(a21)+12i(a2+1)a2}=πa2+π(a+2)a2φ(a)=πloga2+πda(a+2)a2+Kda(a+2)a2=a2=t4tdt(2t2+2)t(a=2t2)=4dt2t2+2=2dtt2+1=2arctan(a2)φ(a)=πloga2+2πarctan(a2)+Kφ(o)=+log(2t2)t2+1dt=20log2+2logtt2+1dt=2log2×π2+40logt1+t2dt=πlog2+0=πlog2+KK=0φ(a)=πloga2+2πarctan(a2)φ(1)=2πarctan(12)Φ=πlog2+πarctan(12)=πlog2+π(π2arctan2)=πlog2+π22πarctan(2)

Leave a Reply

Your email address will not be published. Required fields are marked *