Question Number 143783 by mnjuly1970 last updated on 18/Jun/21

Answered by mindispower last updated on 18/Jun/21
![f(a)=∫_(−∞) ^∞ ((ln(2+2ax^2 ))/(4+x^2 )),a≥0 f′(a)=∫_(−∞) ^∞ ((2x^2 )/((4+x^2 )(2+2ax^2 ))) by residue theorem f′(a)=2iπ.(((2(2i)^2 )/(2.2i(2+2a.(2i)^2 )))+((2.(((−1)/a)))/((4−(1/a)).4a.(i/( (√a))))) =2iπ(.((−8)/(4i(2−8a)))−(2/((4a−1).4i(√a)))) =((2π)/(4a−1))−(π/((4a−1)(√a))) f(a)=(π/2)ln∣4a−1∣+π∫((dx/(2x+1))−(1/(2x−1))) =(π/2)ln∣4a−1∣+(π/2)ln∣((2(√a)+1)/(2(√a)−1))∣+c f(0)=c=∫((ln(2))/(4+x^2 ))dx= ((ln(2))/2) arctan(x)]_(−∞) ^∞ =((ln(2)π)/2) (π/2)ln∣4a+4(√a)+1∣+((ln(2)π)/2)=f(a) Ω=f((1/2))=(π/2)ln(6+4(√2))≃3,85](https://www.tinkutara.com/question/Q143834.png)
Commented by mnjuly1970 last updated on 18/Jun/21

Commented by mindispower last updated on 18/Jun/21

Answered by mnjuly1970 last updated on 18/Jun/21

Answered by mnjuly1970 last updated on 18/Jun/21

Answered by mathmax by abdo last updated on 18/Jun/21
![Φ=∫_(−∞) ^(+∞) ((log(2+x^2 ))/(4+x^2 ))dx ⇒Φ=_(x=2t) ∫_(−∞) ^(+∞) ((log(2+4t^2 ))/(4(1+t^2 )))(2dt) =(1/2) ∫_(−∞) ^(+∞) ((log2 +log(1+2t^2 ))/(1+t^2 ))dt =(1/2)log2 [arctant]_(−∞) ^(+∞) +(1/2)∫_(−∞) ^(+∞) ((log(2t^2 +1))/(t^2 +1))dt =πlog2 +(1/2)∫_(−∞) ^(+∞) ((log(2t^2 +1))/(t^2 +1))dt ϕ(a)=∫_(−∞) ^(+∞) ((log(2t^2 +a))/(t^2 +1))dt (a>0) ⇒ ϕ^′ (a)=∫_(−∞) ^(+∞) (1/((t^2 +1)(2t^2 +a)))dt =(1/2)∫_(−∞) ^(+∞) (dt/((t^2 +1)(t^2 +((√(a/2)))^2 ))) =(1/2)2iπ{Res(ϕ^∼ ,i) +Res(ϕ^∼ ,i(√(a/2)))} ϕ^∼ (z)=(1/((z−i)(z+i)(z−i(√(a/2)))(z+i(√(a/2))))) Res(ϕ,i)=(1/(2i(−1+(a/2)))) Res(ϕ^∼ ,i(√(a/2)))=(1/(((a/2)+1)2i(√(a/2)))) ⇒ ϕ^′ (a)=iπ{(1/(2i((a/2)−1)))+(1/(2i((a/2)+1)(√(a/2))))} =(π/(a−2)) +(π/((a+2)(√(a/2)))) ⇒ ϕ(a)=πlog∣a−2∣ +π∫ (da/((a+2)(√(a/2)))) +K ∫ (da/((a+2)(√(a/2)))) =_((√(a/2))=t) ∫ ((4tdt)/((2t^2 +2)t)) (a=2t^2 ) =4∫ (dt/(2t^2 +2))=2 ∫ (dt/(t^2 +1))=2arctan((√(a/2))) ⇒ ϕ(a)=πlog∣a−2∣+2π arctan((√(a/2))) +K ϕ(o)=∫_(−∞) ^(+∞) ((log(2t^2 ))/(t^2 +1))dt =2∫_0 ^∞ ((log2+2logt)/(t^2 +1))dt =2log2 ×(π/2)+4∫_0 ^∞ ((logt)/(1+t^2 ))dt=πlog2 +0=πlog2+K ⇒K=0 ϕ(a)=πlog∣a−2∣+2πarctan((√(a/2))) ϕ(1)=2πarctan((1/( (√2)))) ⇒ Φ=πlog2 +π arctan((1/( (√2)))) =πlog2+π((π/2)−arctan(√2)) =πlog2+(π^2 /2)−π arctan((√2))](https://www.tinkutara.com/question/Q143848.png)