Menu Close

log-2-x-log-3-x-1-x-




Question Number 131884 by Study last updated on 09/Feb/21
log_2 x+log_3 x=1       x=?
$${log}_{\mathrm{2}} {x}+{log}_{\mathrm{3}} {x}=\mathrm{1}\:\:\:\:\:\:\:{x}=? \\ $$
Answered by EDWIN88 last updated on 09/Feb/21
 ((ln x)/(ln 2)) + ((ln x)/(ln 3)) = 1    ln x ((1/(ln 2))+(1/(ln 3)))=1   ln x = ((ln 2.ln 3)/(ln 6)) ⇒x = e^((((ln 2.ln 3)/(ln 6))))  ≈ 1.529592  e^((ln 2×ln 3)/(ln 6))   1.529592
$$\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{ln}\:\mathrm{2}}\:+\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{ln}\:\mathrm{3}}\:=\:\mathrm{1}\: \\ $$$$\:\mathrm{ln}\:\mathrm{x}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{3}}\right)=\mathrm{1} \\ $$$$\:\mathrm{ln}\:\mathrm{x}\:=\:\frac{\mathrm{ln}\:\mathrm{2}.\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{6}}\:\Rightarrow\mathrm{x}\:=\:\mathrm{e}^{\left(\frac{\mathrm{ln}\:\mathrm{2}.\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{6}}\right)} \:\approx\:\mathrm{1}.\mathrm{529592} \\ $$$$\mathrm{e}^{\frac{\mathrm{ln}\:\mathrm{2}×\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{6}}} \\ $$$$\mathrm{1}.\mathrm{529592} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *