Menu Close

log-2-x-log-3-x-1-x-




Question Number 131890 by Study last updated on 09/Feb/21
log_2 x+log_3 x=1     x=?
$${log}_{\mathrm{2}} {x}+{log}_{\mathrm{3}} {x}=\mathrm{1}\:\:\:\:\:{x}=? \\ $$
Answered by Raxreedoroid last updated on 09/Feb/21
((log_3 x)/(log_3 2))+log_3 x=1  log_3 (√x^2 )=1  x=3
$$\frac{{log}_{\mathrm{3}} {x}}{{log}_{\mathrm{3}} \mathrm{2}}+{log}_{\mathrm{3}} {x}=\mathrm{1} \\ $$$${log}_{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} }=\mathrm{1} \\ $$$${x}=\mathrm{3} \\ $$
Commented by liberty last updated on 09/Feb/21
wrong
$$\mathrm{wrong} \\ $$
Commented by Raxreedoroid last updated on 09/Feb/21
ah sorry a mistake  ((log_3 x)/(log_3 2))+log_3 x=1  log_3 x ∙(1+log_3 2)=1  log_3 x=(1/(1+log_3 2))  x=3^(1/(1+log_3 2)) ≈1.9613 ...
$$\mathrm{ah}\:\mathrm{sorry}\:\mathrm{a}\:\mathrm{mistake} \\ $$$$\frac{{log}_{\mathrm{3}} {x}}{{log}_{\mathrm{3}} \mathrm{2}}+{log}_{\mathrm{3}} {x}=\mathrm{1} \\ $$$${log}_{\mathrm{3}} {x}\:\centerdot\left(\mathrm{1}+{log}_{\mathrm{3}} \mathrm{2}\right)=\mathrm{1} \\ $$$${log}_{\mathrm{3}} {x}=\frac{\mathrm{1}}{\mathrm{1}+{log}_{\mathrm{3}} \mathrm{2}} \\ $$$${x}=\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{1}+{log}_{\mathrm{3}} \mathrm{2}}} \approx\mathrm{1}.\mathrm{9613}\:… \\ $$
Commented by EDWIN88 last updated on 09/Feb/21
it should be ⇒ log _3 (x) [ 1+(1/(log _3 (2))) ]=1  log _3 (x) [ ((log _3 (2)+1)/(log _3 (2))) ]=1   log _3 (x) = ((log _3 (2))/(log _3 (6))) ⇒x = 3^(log _6 (2)) ≈1.529592  3^(log _6 2)   1.529592
$$\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\Rightarrow\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{x}\right)\:\left[\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{2}\right)}\:\right]=\mathrm{1} \\ $$$$\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{x}\right)\:\left[\:\frac{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{2}\right)+\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{2}\right)}\:\right]=\mathrm{1} \\ $$$$\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{x}\right)\:=\:\frac{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{2}\right)}{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{6}\right)}\:\Rightarrow\mathrm{x}\:=\:\mathrm{3}^{\mathrm{log}\:_{\mathrm{6}} \left(\mathrm{2}\right)} \approx\mathrm{1}.\mathrm{529592} \\ $$$$\mathrm{3}^{\mathrm{log}\:_{\mathrm{6}} \mathrm{2}} \\ $$$$\mathrm{1}.\mathrm{529592} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *