Menu Close

log-2x-1-x-2-1-log-x-1-3-2x-5-18-2x-




Question Number 143329 by Huy last updated on 13/Jun/21
log_(2x+1) (x^2 +1)+log_(x+1) (3(√(2x+5))+18)=2x
$$\mathrm{log}_{\mathrm{2x}+\mathrm{1}} \left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{log}_{\mathrm{x}+\mathrm{1}} \left(\mathrm{3}\sqrt{\mathrm{2x}+\mathrm{5}}+\mathrm{18}\right)=\mathrm{2x} \\ $$
Answered by Olaf_Thorendsen last updated on 13/Jun/21
log_(2x+1) (x^2 +1)+log_(x+1) (3(√(2x+5))+18) = 2x  If 2x+1 = x^2 +1 (x = 2) :  log_(2x+1) (x^2 +1) = 1  log_(x+1) (3(√(2x+5))+18) = log_3 27 = 3  2x = 2×2 = 4    x = 2 is a trivial solution
$$\mathrm{log}_{\mathrm{2}{x}+\mathrm{1}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{log}_{{x}+\mathrm{1}} \left(\mathrm{3}\sqrt{\mathrm{2}{x}+\mathrm{5}}+\mathrm{18}\right)\:=\:\mathrm{2}{x} \\ $$$$\mathrm{If}\:\mathrm{2}{x}+\mathrm{1}\:=\:{x}^{\mathrm{2}} +\mathrm{1}\:\left({x}\:=\:\mathrm{2}\right)\:: \\ $$$$\mathrm{log}_{\mathrm{2}{x}+\mathrm{1}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)\:=\:\mathrm{1} \\ $$$$\mathrm{log}_{{x}+\mathrm{1}} \left(\mathrm{3}\sqrt{\mathrm{2}{x}+\mathrm{5}}+\mathrm{18}\right)\:=\:\mathrm{log}_{\mathrm{3}} \mathrm{27}\:=\:\mathrm{3} \\ $$$$\mathrm{2}{x}\:=\:\mathrm{2}×\mathrm{2}\:=\:\mathrm{4} \\ $$$$ \\ $$$${x}\:=\:\mathrm{2}\:\mathrm{is}\:\mathrm{a}\:\mathrm{trivial}\:\mathrm{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *