Menu Close

log-3-x-3-2-log-3-x-3-3-




Question Number 4458 by love math last updated on 29/Jan/16
log_3 (x−3)^2 +log_3 ∣x−3∣=3
log3(x3)2+log3x3∣=3
Answered by Yozzii last updated on 29/Jan/16
Note that ∣u∣=(√u^2 ).  ∴ log_3 ∣x−3∣=log_3 (√((x−3)^2 ))=0.5log_3 (x−3)^2   ∴ The given equation becomes, where  n=log_3 (x−3)^2 ,  n+0.5n=3⇒n=2  ⇒log_3 (x−3)^2 =2⇒(x−3)^2 =9  ⇒x=3±3⇒x=6 or x=0.   Checking, for x=0,  log_3 (0−3)^2 +log_3 ∣0−3∣=log_3 9+log_3 3=3  For x=6,   log_3 (6−3)^2 +log_3 ∣6−3∣=log_3 9+log_3 3=3
Notethatu∣=u2.log3x3∣=log3(x3)2=0.5log3(x3)2Thegivenequationbecomes,wheren=log3(x3)2,n+0.5n=3n=2log3(x3)2=2(x3)2=9x=3±3x=6orx=0.Checking,forx=0,log3(03)2+log303∣=log39+log33=3Forx=6,log3(63)2+log363∣=log39+log33=3
Commented by Yozzii last updated on 29/Jan/16
Observe that if I had decided to   write n=log_3 (x−3) the given equation  becomes 2n+n=3⇒n=1⇒x−3=3⇒x=6.  We′d be missing the solution x=0  from this method.
ObservethatifIhaddecidedtowriten=log3(x3)thegivenequationbecomes2n+n=3n=1x3=3x=6.Wedbemissingthesolutionx=0fromthismethod.
Commented by Rasheed Soomro last updated on 31/Jan/16
N^  icE!
NicE!

Leave a Reply

Your email address will not be published. Required fields are marked *