Menu Close

log-a-ax-log-x-ax-log-a-2-1-a-a-gt-0-a-1-So-x-




Question Number 143812 by liberty last updated on 18/Jun/21
 log _a (ax).log _x (ax)=log _a^2  ((1/a))   a>0 , a≠1 . So x = ?
loga(ax).logx(ax)=loga2(1a)a>0,a1.Sox=?
Answered by Olaf_Thorendsen last updated on 18/Jun/21
log_a (ax).log_x (ax) = log_a^2  ((1/a))  ((ln(ax))/(lna)).((ln(ax))/(lnx)) = −(1/2)log_a^2  a^2  = −(1/2)  ln^2 (ax) = −(1/2)lna.lnx  ln^2 a+ln^2 x+2lna.lnx = −(1/2)lna.lnx  ln^2 x+ln^2 a+(5/2)lna.lnx = 0  (lnx+(5/4)lna)^2 = (9/(16))ln^2 a  lnx+(5/4)lna= ±(3/4)∣lna∣ = ±(3/4)lna  lnx= −(5/4)lna±(3/4)lna  lnx= −2lna or −(1/2)lna  x = (1/a^2 ) or (1/( (√a)))
loga(ax).logx(ax)=loga2(1a)ln(ax)lna.ln(ax)lnx=12loga2a2=12ln2(ax)=12lna.lnxln2a+ln2x+2lna.lnx=12lna.lnxln2x+ln2a+52lna.lnx=0(lnx+54lna)2=916ln2alnx+54lna=±34lna=±34lnalnx=54lna±34lnalnx=2lnaor12lnax=1a2or1a

Leave a Reply

Your email address will not be published. Required fields are marked *