Menu Close

log-abc-b-3-log-abc-c-4-log-abc-a-




Question Number 12093 by uni last updated on 13/Apr/17
log_(abc) b=3  log_(abc) c=4  log_(abc) a=?
$$\mathrm{log}_{\mathrm{abc}} \mathrm{b}=\mathrm{3} \\ $$$$\mathrm{log}_{\mathrm{abc}} \mathrm{c}=\mathrm{4} \\ $$$$\mathrm{log}_{\mathrm{abc}} \mathrm{a}=? \\ $$
Answered by ajfour last updated on 13/Apr/17
log _(abc) abc =(log _(abc) a)+(log _(abc) b)+(log _(abc) c)=1  (log _(abc) a)+3+4 =1  log _(abc) a =−6 .
$$\mathrm{log}\:_{{abc}} {abc}\:=\left(\mathrm{log}\:_{{abc}} {a}\right)+\left(\mathrm{log}\:_{{abc}} {b}\right)+\left(\mathrm{log}\:_{{abc}} {c}\right)=\mathrm{1} \\ $$$$\left(\mathrm{log}\:_{{abc}} {a}\right)+\mathrm{3}+\mathrm{4}\:=\mathrm{1} \\ $$$$\mathrm{log}\:_{{abc}} {a}\:=−\mathrm{6}\:. \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *