Menu Close

log-s-s-1-J-x-x-s-1-dx-Prove-that-Here-J-x-pi-x-1-2-pi-x-1-3-pi-x-1-3-pi-x-Prime-counting-function-




Question Number 141345 by Dwaipayan Shikari last updated on 17/May/21
((log(ζ(s)))/s)=∫_1 ^∞ J(x)x^(−s−1) dx ( Prove that)  Here  J(x)=π(x)+(1/2)π((√x))+(1/3)π((x)^(1/3) )+...  π(x):=Prime counting function
$$\frac{{log}\left(\zeta\left({s}\right)\right)}{{s}}=\int_{\mathrm{1}} ^{\infty} {J}\left({x}\right){x}^{−{s}−\mathrm{1}} {dx}\:\left(\:{Prove}\:{that}\right) \\ $$$${Here}\:\:{J}\left({x}\right)=\pi\left({x}\right)+\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\sqrt{{x}}\right)+\frac{\mathrm{1}}{\mathrm{3}}\pi\left(\sqrt[{\mathrm{3}}]{{x}}\right)+… \\ $$$$\pi\left({x}\right):=\boldsymbol{\mathrm{P}{rime}}\:\boldsymbol{{counting}}\:\boldsymbol{{function}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *