Menu Close

log-x-2-10-3x-lt-2-




Question Number 136256 by EDWIN88 last updated on 20/Mar/21
log _((x−2)) (10−3x) < 2
log(x2)(103x)<2
Answered by liberty last updated on 20/Mar/21
(1) 10−3x > 0 ; 3x−10<0          x < ((10)/3)  (2) log _((x−2)) (10−3x) < log _((x−2)) (x−2)^2    (x−2−1)(10−3x−(x−2)^2 ) < 0  ⇔ (x−3)(10−3x−x^2 +4x−4)< 0  (x−3)(−x^2 +x+6)< 0  ⇔(x−3)(x^2 −x−6)>0  (x−3)(x−3)(x+2)>0  (x−3)^2 (x+2)>0  ⇒−2<x<3 ∪ x>3  (3) x−2>0, x>2  The solution set is (2,3)∪(3,((10)/3))
(1)103x>0;3x10<0x<103(2)log(x2)(103x)<log(x2)(x2)2(x21)(103x(x2)2)<0(x3)(103xx2+4x4)<0(x3)(x2+x+6)<0(x3)(x2x6)>0(x3)(x3)(x+2)>0(x3)2(x+2)>02<x<3x>3(3)x2>0,x>2Thesolutionsetis(2,3)(3,103)

Leave a Reply

Your email address will not be published. Required fields are marked *