Menu Close

log-x-2-dx-




Question Number 46 by surabhi last updated on 25/Jan/15
∫(log x)^2 dx
(logx)2dx
Answered by surabhi last updated on 04/Nov/14
∫(log x)^2 dx=∫∣(log x)^2 ∙1∣dx  =(log x)^2 ∙∫1 dx−∫{(d/dx)(log x)^2 ∙∫1 dx}dx  =x(log x)^2 −∫(((2log x)/x)∙x)dx  =x(log x)^2 −2∫(log x∙1)dx  =x(log x)^2 −2[(log x)∫dx−∫{(d/dx)(log x)∙∫dx}dx]  =x(log x)^2 −2[x log  x−∫(1/x)∙x dx]  =x(log x)^2 −2x log x+2x+C
(logx)2dx=(logx)21dx=(logx)21dx{ddx(logx)21dx}dx=x(logx)2(2logxxx)dx=x(logx)22(logx1)dx=x(logx)22[(logx)dx{ddx(logx)dx}dx]=x(logx)22[xlogx1xxdx]=x(logx)22xlogx+2x+C