log-x-2-dx- Tinku Tara June 3, 2023 Integration FacebookTweetPin Question Number 46 by surabhi last updated on 25/Jan/15 ∫(logx)2dx Answered by surabhi last updated on 04/Nov/14 ∫(logx)2dx=∫∣(logx)2⋅1∣dx=(logx)2⋅∫1dx−∫{ddx(logx)2⋅∫1dx}dx=x(logx)2−∫(2logxx⋅x)dx=x(logx)2−2∫(logx⋅1)dx=x(logx)2−2[(logx)∫dx−∫{ddx(logx)⋅∫dx}dx]=x(logx)2−2[xlogx−∫1x⋅xdx]=x(logx)2−2xlogx+2x+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-65580Next Next post: Prove-that-1-3-2-3-3-3-n-3-1-2-3-n-2-