log-x-8-x-2-3x-4-lt-2-log-4-x-2-x-4- Tinku Tara June 3, 2023 Logarithms 0 Comments FacebookTweetPin Question Number 133936 by liberty last updated on 25/Feb/21 logx+8(x2−3x−4)<2.log(4−x)2(∣x−4∣) Answered by EDWIN88 last updated on 25/Feb/21 logx+8(x2−3x−4)<2.log(4−x)2(∣x−4∣){x2−3x−4>0x+8>0;x+8≠1(4−x)2≠1,x≠4{x<−1;x>4x>−8x≠4;x≠3;x≠5⇔logx+8(x2−3x−4)<2.log(x−4)2∣x−4∣⇔logx+8(x2−3x−4)<2.12log∣x−4∣∣x−4∣⇔logx+8(x2−3x−4)<1;ln(x2−3x−4)ln(x+8)<1ln(x2−3x−4)−ln(x+8)ln(x+8)<0numerator:ln(x2−3x−4)=ln(x+8);x2−4x−12=0x1=6;x2=−2denumerator:ln(x+8)=0;x=−7solutionsetis(−8;−7)∪(−2;−1)∪(4;5)∪(5;6) Answered by bobhans last updated on 25/Feb/21 ⇔logx+8(x2−3x−4)<2.log(4−x)2(4−x)2logx+8(x2−3x−4)<1logx+8(x2−3x−4)<logx+8(x+8)⇔(x+8−1)(x2−3x−4−x−8)<0(x+7)(x2−4x−12)<0(x+7)(x−6)(x+2)<0(i)x<−7∪−2<x<6(ii){(4−x)2≠0⇒x≠4(4−x)2≠1⇒x≠3;x≠5x+8>0;x>−8(iii)x2−3x−4>0;(x−4)(x+1)>0x<−1∪x>4solution:(i)∩(ii)∩(iii) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-133938Next Next post: There-are-a-few-problem-reported-Notification-google-discontinued-Google-Cloud-Messaging-so-notifications-are-not-working-Other-Problems-There-has-been-several-new-phone-models-and-android-versio Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.