Menu Close

log-x-8-x-2-3x-4-lt-2-log-4-x-2-x-4-




Question Number 133936 by liberty last updated on 25/Feb/21
log _(x+8) (x^2 −3x−4) < 2.log _((4−x)^2 ) (∣x−4∣)
logx+8(x23x4)<2.log(4x)2(x4)
Answered by EDWIN88 last updated on 25/Feb/21
 log _(x+8) (x^2 −3x−4)<2.log _((4−x)^2 ) (∣x−4∣)   { ((x^2 −3x−4>0)),((x+8>0 ; x+8≠1 )),(((4−x)^2 ≠1 , x≠4 )) :}  { ((x<−1 ; x>4)),((x>−8)),((x≠4; x≠3; x≠5)) :}  ⇔ log _(x+8) (x^2 −3x−4)<2.log _((x−4)^2 ) ∣x−4∣  ⇔log _(x+8) (x^2 −3x−4)<2.(1/2)log _(∣x−4∣)  ∣x−4∣  ⇔ log _(x+8) (x^2 −3x−4)<1 ; ((ln (x^2 −3x−4))/(ln (x+8))) <1   ((ln (x^2 −3x−4)−ln (x+8))/(ln (x+8))) <0  numerator :ln (x^2 −3x−4) = ln (x+8) ; x^2 −4x−12=0  x_1 =6 ; x_2 =−2  denumerator : ln (x+8)=0 ; x=−7  solution set is (−8;−7)∪(−2;−1)∪(4;5)∪(5;6)
logx+8(x23x4)<2.log(4x)2(x4){x23x4>0x+8>0;x+81(4x)21,x4{x<1;x>4x>8x4;x3;x5logx+8(x23x4)<2.log(x4)2x4logx+8(x23x4)<2.12logx4x4logx+8(x23x4)<1;ln(x23x4)ln(x+8)<1ln(x23x4)ln(x+8)ln(x+8)<0numerator:ln(x23x4)=ln(x+8);x24x12=0x1=6;x2=2denumerator:ln(x+8)=0;x=7solutionsetis(8;7)(2;1)(4;5)(5;6)
Answered by bobhans last updated on 25/Feb/21
 ⇔ log _(x+8) (x^2 −3x−4) < 2.log _((4−x)^2 )  (√((4−x)^2 ))  log _(x+8) (x^2 −3x−4) < 1    log _(x+8) (x^2 −3x−4) < log _(x+8) (x+8)  ⇔ (x+8−1)(x^2 −3x−4−x−8)< 0  (x+7)(x^2 −4x−12) < 0  (x+7)(x−6)(x+2) < 0  (i) x < −7 ∪ −2 < x < 6  (ii)  { (((4−x)^2 ≠ 0 ⇒x≠ 4)),(((4−x)^2 ≠ 1 ⇒ x≠ 3; x≠ 5)),((x+8 > 0 ; x > −8)) :}  (iii) x^2 −3x−4 > 0 ; (x−4)(x+1)>0   x<−1 ∪ x > 4   solution : (i)∩(ii)∩(iii)
logx+8(x23x4)<2.log(4x)2(4x)2logx+8(x23x4)<1logx+8(x23x4)<logx+8(x+8)(x+81)(x23x4x8)<0(x+7)(x24x12)<0(x+7)(x6)(x+2)<0(i)x<72<x<6(ii){(4x)20x4(4x)21x3;x5x+8>0;x>8(iii)x23x4>0;(x4)(x+1)>0x<1x>4solution:(i)(ii)(iii)

Leave a Reply

Your email address will not be published. Required fields are marked *