Menu Close

m-1-1-r-0-m-1-2m-2r-1-1-m-r-2-r-0-m-2m-2r-1-m-r-2-




Question Number 8003 by Yozzia last updated on 27/Sep/16
Σ_(m=1) ^∞ ((1/((Σ_(r=0) ^(m−1)  (((2m)),((2r+1)) ) (−1)^(m−r) )^2 +(Σ_(r=0) ^m  (((2m)),((2r)) ) (−1)^(m−r) )^2 )))=?
m=1(1(m1r=0(2m2r+1)(1)mr)2+(mr=0(2m2r)(1)mr)2)=?
Commented by prakash jain last updated on 30/Sep/16
Σ_(r=0) ^(m−1)  (((2m)),((2r+1)) ) (−1)^(m−r) =(−1)^m Σ_(r=0) ^(m−1) ^(2m) C_(2r+1) (−1)^r   Σ_(r=0) ^m  (((2m)),((2r)) ) (−1)^(m−r) =(−1)^m Σ_(r=0) ^m ^(2m) C_(2r) (−1)^r   Since whole sums are squared we can ignore  (−1)^m   let us call C_k =^(2m) C_k   Σ_(r=0) ^(m−1) ^(2m) C_(2r+1) (−1)^r =C_1 −C_3 +C_5 +−...−C_(2m−1)   ...(i)  Σ_(r=0) ^m ^(2m) C_(2r+1) (−1)^r =C_0 −C_2 +C_4 +−...+C_(2m)      ...(ii)  (1+i)^(2m) =C_0 +iC_1 −C_2 −iC_3 +−...+C_(2m)    ..(A)  (1−i)^(2m) =C_0 −iC_1 −C_2 +iC_3 +−...+C_(2m)    ..(B)  from (A) and (B)  C_0 −C_2 +C_4 +−..+C_(2m) =(((1+i)^(2m) +(1−i)^(2m) )/2)  C_1 −C_3 +C_5 +−...+(−1)^m C_(2m+1) =(((1+i)^(2m) −(1−i)^(2m) )/(2i))  substituting above values in (i) amd (ii{  Σ_(r=0) ^(m−1) ^(2m) C_(2r+1) (−1)^r =(((1+i)^(2m) +(1−i)^(2m) )/2)  Σ_(r=0) ^m ^(2m) C_(2r+1) (−1)^r =(((1+i)^(2m) −(1−i)^(2m) )/(2i))  Given expression in Question=  =(1/(((((1+i)^(2m) +(1−i)^(2m) )/2))^2 +((((1+i)^(2m) −(1−i)^(2m) )/(2i)))^2 ))  =(1/(((((1+i)^(2m) +(1−i)^(2m) )/2))^2 −((((1+i)^(2m) −(1−i)^(2m) )/2))^2 ))  =(1/((1+i)^(2m) (1−i)^(2m) ))  =(1/2^(2m) )  Summation in comments below
m1r=0(2m2r+1)(1)mr=(1)mm1r=02mC2r+1(1)rmr=0(2m2r)(1)mr=(1)mmr=02mC2r(1)rSincewholesumsaresquaredwecanignore(1)mletuscallCk=2mCkm1r=02mC2r+1(1)r=C1C3+C5+C2m1(i)mr=02mC2r+1(1)r=C0C2+C4++C2m(ii)(1+i)2m=C0+iC1C2iC3++C2m..(A)(1i)2m=C0iC1C2+iC3++C2m..(B)from(A)and(B)C0C2+C4+..+C2m=(1+i)2m+(1i)2m2C1C3+C5++(1)mC2m+1=(1+i)2m(1i)2m2isubstitutingabovevaluesin(i)amd(ii{m1r=02mC2r+1(1)r=(1+i)2m+(1i)2m2mr=02mC2r+1(1)r=(1+i)2m(1i)2m2iGivenexpressioninQuestion==1((1+i)2m+(1i)2m2)2+((1+i)2m(1i)2m2i)2=1((1+i)2m+(1i)2m2)2((1+i)2m(1i)2m2)2=1(1+i)2m(1i)2m=122mSummationincommentsbelow
Commented by Yozzia last updated on 30/Sep/16
Great! But minor error:  (((u(i)+u(−i))/2))^2 −(((u(i)−u(−i))/2))^2   =(((2u(i))/2))(((2u(−i))/2))  =u(i)u(−i)  =(1+i)^(2m) (1−i)^(2m) =2^(2m) =4^m   ∴ Σ_(m=1) ^∞ (1/4^m )=((1/4)/(1−(1/4)))=(1/3)
Great!Butminorerror:(u(i)+u(i)2)2(u(i)u(i)2)2=(2u(i)2)(2u(i)2)=u(i)u(i)=(1+i)2m(1i)2m=22m=4mm=114m=1/4114=13
Commented by prakash jain last updated on 30/Sep/16
Thanks and i forgot to sum as well
Thanksandiforgottosumaswell
Answered by prakash jain last updated on 30/Sep/16
see answer in comments.
seeanswerincomments.

Leave a Reply

Your email address will not be published. Required fields are marked *