Menu Close

m-d-2-x-dt-2-f-k-dx-dt-x-0-x-0-x-0-v-0-x-t-




Question Number 4800 by 123456 last updated on 13/Mar/16
m(d^2 x/dt^(2 ) )=f−k(dx/dt)  x(0)=x_0   x′(0)=v_0   x(t)=?
md2xdt2=fkdxdtx(0)=x0x(0)=v0x(t)=?
Answered by Yozzii last updated on 13/Mar/16
mx^(..) +kx^. −f=0  Auxiliary quadratic equation leads to  mp^2 +kp−f=0  ⇒p=((−k±(√(k^2 −4m(−f))))/(2m))  p=((−k±(√(k^2 +4mf)))/(2m))  If k^2 +4mf>0⇒p has two distinct values.  So, the general solution is given by                    x(t)=Ae^(p_1 t) +Be^(p_2 t)   where p_1 =(((√(k^2 +4mf))−k)/(2m)),                  p_2 =((−k−(√(k^2 +4mf)))/(2m)),  A and B are constants.  Since x(0)=x_0 ⇒x_0 =A+B  ⇒A=x_0 −B.......(1)  Differentiating x(t) w.r.t t gives  x^′ (t)=Ap_1 e^(p_1 t) +Bp_2 e^(p_2 t)   Now, x^′ (0)=v_0 .  ∴v_0 =Ap_1 +Bp_2 .........(2)  Substituting A from (1) into (2) yields  v_0 =p_1 (x_0 −B)+Bp_2   v_0 =p_1 x_0 +B(p_2 −p_1 )  ⇒B=((v_0 −p_1 x_0 )/(p_2 −p_1 ))  Note that p_2 −p_1 =((−(√(k^2 +4mf)))/m)≠0 unless  k^2 =−4mf⇒mf≤0⇒k=m=f=0  or k=±2(√(−mf)) where mf<0. m≠0  since then p_2 −p_1  is undefined.  So k=0 iff f=0 and m≠0.  ∴ A=x_0 −((v_0 −p_1 x_0 )/(p_2 −p_1 ))=((x_0 p_2 −v_0 )/(p_2 −p_1 )).  ∴ x(t)={((x_0 p_2 −v_0 )/(p_2 −p_1 ))}e^(p_1 t) +{((v_0 −p_1 x_0 )/(p_2 −p_1 ))}e^(p_2 t)   or x(t)=((m(v_0 −p_2 x_0 )e^(p_1 t) )/( (√(k^2 +4mf))))+((m(p_1 x_0 −v_0 )e^(p_2 t) )/( (√(k^2 +4mf))))  or x(t)=(1/( (√(k^2 +4mf))))({((2v_0 m+x_0 (k+(√(k^2 +4mf))))/2)}e^(t((((√(k^2 +4mf))−k)/(2m)))) +{((x_0 ((√(k^2 +4mf))−k)−2mv_0 )/2)}e^(−t(((k+(√(k^2 +4mf)))/(2m)))) )    Checking:  x(0)=((x_0 p_2 −v_0 )/(p_2 −p_1 ))+((v_0 −p_1 x_0 )/(p_2 −p_1 ))=((x_0 (p_2 −p_1 ))/(p_2 −p_1 ))=x_0   x^′ (0)=(1/(p_2 −p_1 ))(p_2 p_1 x_0 −p_1 v_0 +p_2 v_0 −p_1 p_2 x_0 )=v_0
mx..+kx.f=0Auxiliaryquadraticequationleadstomp2+kpf=0p=k±k24m(f)2mp=k±k2+4mf2mIfk2+4mf>0phastwodistinctvalues.So,thegeneralsolutionisgivenbyx(t)=Aep1t+Bep2twherep1=k2+4mfk2m,p2=kk2+4mf2m,AandBareconstants.Sincex(0)=x0x0=A+BA=x0B.(1)Differentiatingx(t)w.r.ttgivesx(t)=Ap1ep1t+Bp2ep2tNow,x(0)=v0.v0=Ap1+Bp2(2)SubstitutingAfrom(1)into(2)yieldsv0=p1(x0B)+Bp2v0=p1x0+B(p2p1)B=v0p1x0p2p1Notethatp2p1=k2+4mfm0unlessk2=4mfmf0k=m=f=0ork=±2mfwheremf<0.m0sincethenp2p1isundefined.Sok=0ifff=0andm0.A=x0v0p1x0p2p1=x0p2v0p2p1.x(t)={x0p2v0p2p1}ep1t+{v0p1x0p2p1}ep2torx(t)=m(v0p2x0)ep1tk2+4mf+m(p1x0v0)ep2tk2+4mforx(t)=1k2+4mf({2v0m+x0(k+k2+4mf)2}et(k2+4mfk2m)+{x0(k2+4mfk)2mv02}et(k+k2+4mf2m))Checking:x(0)=x0p2v0p2p1+v0p1x0p2p1=x0(p2p1)p2p1=x0x(0)=1p2p1(p2p1x0p1v0+p2v0p1p2x0)=v0
Commented by Yozzii last updated on 13/Mar/16
If k^2 +4mf=0⇒a repeated root for  the auxiliary quadratic equation exists  and is given by p=((−k)/(2m)) (m≠0).The general  solution for x(t) is therefore                     x(t)=(At+B)e^(pt)   We are given that x(0)=x_0  and x^′ (0)=v_0 .  ∴ x_0 =0+B⇒B=x_0 .  Differentiating x(t) w.r.t t  ⇒x^′ (t)=pe^(pt) (At+B)+Ae^(pt)   ∴v_0 =pB+A⇒A=v_0 −pB=v_0 +((kx_0 )/(2m))  ∴ x(t)={(v_0 +((kx_0 )/(2m)))t+x_0 }e^(−kt/2m)   (m≠0).
Ifk2+4mf=0arepeatedrootfortheauxiliaryquadraticequationexistsandisgivenbyp=k2m(m0).Thegeneralsolutionforx(t)isthereforex(t)=(At+B)eptWearegiventhatx(0)=x0andx(0)=v0.x0=0+BB=x0.Differentiatingx(t)w.r.ttx(t)=pept(At+B)+Aeptv0=pB+AA=v0pB=v0+kx02mx(t)={(v0+kx02m)t+x0}ekt/2m(m0).
Commented by Yozzii last updated on 13/Mar/16
If k^2 +4mf<0 we get the general  solution of x(t) to be  x(t)=e^(−kt/2m) (Acos((t(√(−(k^2 +4mf))))/(2m))+Bsin((t(√(−(k^2 +4mf))))/(2m))).  Since x(0)=x_0    ⇒x_0 =(1)(A×1+0)⇒A=x_0 .  Also, x^′ (0)=v_0 .  x^′ (t)=((−k)/(2m))e^(−kt/2m) (x_0 cos((t(√(−(k^2 +4mf))))/(2m))+Bsin((t(√(−k^2 −4mf)))/(2m)))  +e^(−kt/2m) (−x_0 ((√(−k^2 −4mf))/(2m))sin((t(√(−k^2 −4mf)))/(2m))+B((√(−k^2 −4mf))/(2m))cos((t(√(−k^2 −4mf)))/(2m)))  ∴ v_0 =((−kx_0 )/(2m))+((B(√(−k^2 −4mf)))/(2m))  ⇒B=((2mv_0 +kx_0 )/( (√(−k^2 −4mf))))  ∴x(t)=e^(−kt/2m) (x_0 cos((t(√(−k^2 −4mf)))/(2m))+((2mv_0 +kx_0 )/( (√(−k^2 −4mf))))sin((t(√(−k^2 −4mf)))/(2m))) (m≠0).
Ifk2+4mf<0wegetthegeneralsolutionofx(t)tobex(t)=ekt/2m(Acost(k2+4mf)2m+Bsint(k2+4mf)2m).Sincex(0)=x0x0=(1)(A×1+0)A=x0.Also,x(0)=v0.x(t)=k2mekt/2m(x0cost(k2+4mf)2m+Bsintk24mf2m)+ekt/2m(x0k24mf2msintk24mf2m+Bk24mf2mcostk24mf2m)v0=kx02m+Bk24mf2mB=2mv0+kx0k24mfx(t)=ekt/2m(x0costk24mf2m+2mv0+kx0k24mfsintk24mf2m)(m0).
Answered by Dnilka228 last updated on 14/Mar/16
f(0)≠cos f  Why?  f+((e/2))^(√f) =tan e_α +α_e   cos f=e+2×2n  n=n  n=(√(45))  (√(45))+(n/e)=0%  but  (5−2)+(2−5)÷0=∞  ∞=∞  0≠∞  (√x) is x÷cos f  α+β too ≠∞  ((Φe)/(ϕe))+cos f=((cos f(1)÷cos f(2))/D)
f(0)cosfWhy?f+(e2)f=taneα+αecosf=e+2×2nn=nn=4545+ne=0%but(52)+(25)÷0==0xisx÷cosfα+βtooΦeφe+cosf=cosf(1)÷cosf(2)D
Commented by FilupSmith last updated on 16/Mar/16
∞≠∞  Proof:  a={0, 1, 2, 3, ..., n}, n∈N+{0}, 0≤n≤∞  b={0, 0.01, 0.001, ..., 0.2, 0.02, ...,1, ..., r}, r∈Z, 0≤r≤∞    Each set contains all whole numbers ≥0   ∴a⊆b  It is a clear observation that ∣b∣>∣a∣  So, assuming each are infinite, b is still  bigger.
Proof:a={0,1,2,3,,n},nN+{0},0nb={0,0.01,0.001,,0.2,0.02,,1,,r},rZ,0rEachsetcontainsallwholenumbers0abItisaclearobservationthatb∣>∣aSo,assumingeachareinfinite,bisstillbigger.
Commented by FilupSmith last updated on 16/Mar/16
You wrote:  (5−2)+(2−5)÷0=∞  this is incorrect    3−(3/0)≠∞   3lim_(x→∞) (1−(1/x))=L  A^+ =lim_(x→0+) (1−(1/x))  A^− =lim_(x→0−) (1−(1/x))    A^+ =1−∞  A^+ =−∞    A^− =1−(−∞)  A^− =+∞    ∴A^± =∓∞    L^± =3A^±   ∴L^± =∓∞
Youwrote:(52)+(25)÷0=thisisincorrect3303limx(11x)=LA+=limx0+(11x)A=limx0(11x)A+=1A+=A=1()A=+A±=L±=3A±L±=

Leave a Reply

Your email address will not be published. Required fields are marked *