Menu Close

m-p-1-a-q-p-1-r-1-b-amp-p-p-1-q-1-c-and-r-p-1-m-1-d-find-either-of-p-q-r-m-in-terms-of-a-b-c-d-




Question Number 67337 by ajfour last updated on 25/Aug/19
m(p+1)=a  ((q(p+1))/(r+1))=b  &  ((p(p+1))/(q+1))=c  and  ((r(p+1))/(m+1))=d  find either of p,q,r,m in terms of  a,b,c,d.
m(p+1)=aq(p+1)r+1=b&p(p+1)q+1=candr(p+1)m+1=dfindeitherofp,q,r,mintermsofa,b,c,d.
Answered by mr W last updated on 25/Aug/19
m=(a/(p+1))  q=((p(p+1))/c)−1  r=((q(p+1))/b)−1=[((p(p+1))/c)−1]((p+1)/b)−1  r(p+1)=d(m+1)  {[((p(p+1))/c)−1]((p+1)/b)−1}(p+1)=((a/(p+1))+1)d  let p+1=t  {[(t−1)t−c]t−bc}t^2 =(a+t)bcd  ⇒t^5 −t^4 −ct^3 −bct^2 −bcdt−abcd=0  ......???
m=ap+1q=p(p+1)c1r=q(p+1)b1=[p(p+1)c1]p+1b1r(p+1)=d(m+1){[p(p+1)c1]p+1b1}(p+1)=(ap+1+1)dletp+1=t{[(t1)tc]tbc}t2=(a+t)bcdt5t4ct3bct2bcdtabcd=0???
Commented by ajfour last updated on 26/Aug/19
trying again to solve the general  quintic i have stuck upon this Sir!
tryingagaintosolvethegeneralquinticihavestuckuponthisSir!

Leave a Reply

Your email address will not be published. Required fields are marked *