Menu Close

mathematical-analysis-evaluate-0-e-2pix-e-pix-x-1-e-2pix-1-e-pix-dx-0-1-ln-x-dx-




Question Number 137419 by mnjuly1970 last updated on 02/Apr/21
       .........mathematical    ....   analysis........         evaluate....         𝛗=∫_0 ^( ∞) ((e^(2πx) −e^(πx) )/(x(1+e^(2πx) )(1+e^(πx) )))dx=λ∫_0 ^( 1) ln(Γ(x)dx            λ = ???
$$\:\:\:\:\:\:\:………{mathematical}\:\:\:\:….\:\:\:{analysis}…….. \\ $$$$\:\:\:\:\:\:\:{evaluate}…. \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{\mathrm{2}\pi{x}} −{e}^{\pi{x}} }{{x}\left(\mathrm{1}+{e}^{\mathrm{2}\pi{x}} \right)\left(\mathrm{1}+{e}^{\pi{x}} \right)}{dx}=\lambda\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right){dx}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\lambda\:=\:??? \\ $$$$\:\:\:\:\:\: \\ $$
Answered by Dwaipayan Shikari last updated on 02/Apr/21
∫_0 ^∞ ((f(ax)−f(bx))/x)dx=lim_(z→∞) (f(z)−f(0))log((a/b))  ∫_0 ^∞ ((e^(2πx) −e^(πx) )/(x(1+e^(2πx) )(1+e^(πx) )))dx=∫_0 ^∞ (((1/(1+e^(πx) ))−(1/(1+e^(2πx) )))/x)dx=(−(1/2))log((1/2))  =((log(2))/2)  λ∫_0 ^1 log(Γ(x))dx=λ((log(2π))/2) (Previous Examples on Community)  λ=((log(2))/(log(2π)))=(1/(1+log_2 (π)))
$$\int_{\mathrm{0}} ^{\infty} \frac{{f}\left({ax}\right)−{f}\left({bx}\right)}{{x}}{dx}=\underset{{z}\rightarrow\infty} {\mathrm{lim}}\left({f}\left({z}\right)−{f}\left(\mathrm{0}\right)\right){log}\left(\frac{{a}}{{b}}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{\mathrm{2}\pi{x}} −{e}^{\pi{x}} }{{x}\left(\mathrm{1}+{e}^{\mathrm{2}\pi{x}} \right)\left(\mathrm{1}+{e}^{\pi{x}} \right)}{dx}=\int_{\mathrm{0}} ^{\infty} \frac{\frac{\mathrm{1}}{\mathrm{1}+{e}^{\pi{x}} }−\frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{2}\pi{x}} }}{{x}}{dx}=\left(−\frac{\mathrm{1}}{\mathrm{2}}\right){log}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{{log}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$\lambda\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\Gamma\left({x}\right)\right){dx}=\lambda\frac{{log}\left(\mathrm{2}\pi\right)}{\mathrm{2}}\:\left({Previous}\:{Examples}\:{on}\:{Community}\right) \\ $$$$\lambda=\frac{{log}\left(\mathrm{2}\right)}{{log}\left(\mathrm{2}\pi\right)}=\frac{\mathrm{1}}{\mathrm{1}+{log}_{\mathrm{2}} \left(\pi\right)} \\ $$
Commented by mnjuly1970 last updated on 02/Apr/21
 mercey mr payan...
$$\:{mercey}\:{mr}\:{payan}… \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 02/Apr/21

Leave a Reply

Your email address will not be published. Required fields are marked *