Question Number 142893 by mnjuly1970 last updated on 06/Jun/21
![.....mathematical .....analysis...... f ∈ C [0,1] and ∫_0 ^( 1) x^n f(x)dx=(1/(n+2)) , n∈N prove f(x):=x .....](https://www.tinkutara.com/question/Q142893.png)
Answered by mindispower last updated on 06/Jun/21
![(1/(n+2))=∫_0 ^1 x^(n+1) dx ⇒∫_0 ^1 x^n (f(x)−x)dx=0,∀n∈N since f(x)∈C[0,1],∃p_m of polynomial such that lagrange theorem ∣f(x)−p_m ∣→0 ⇒∀n∈N ∫_0 ^1 x^n p_m (x)dx=0,p_m ∈R[X] p_m (x)=Σ_(k=0) ^l ∫_0 ^1 a_k x^k .x^n dx=0⇒ Σ_(k=0) ^l (a_k /(k+n+1))=0we got infintie linear equation ⇒(a_k )=0,∀k∈[0,l] ⇒p_m =0,∀m∈N ⇒∣p_m −x∣→0⇒p_m →x ∣f(x)−x∣=∣f(x)−p_m +p_m −x∣≤∣p_m −x∣_0 +∣f(x)−p_m ∣_(=0) ⇒of(x)−x=0⇒f(x)=x](https://www.tinkutara.com/question/Q142895.png)
Commented by mnjuly1970 last updated on 06/Jun/21

Commented by mindispower last updated on 06/Jun/21

Commented by Ar Brandon last updated on 17/Jun/21
Oh ! Dommage ! Qu'est-ce qui s'est passé ?