Menu Close

mathematical-analysis-f-C-0-1-and-0-1-x-n-f-x-dx-1-n-2-n-N-prove-f-x-x-




Question Number 142893 by mnjuly1970 last updated on 06/Jun/21
                      .....mathematical .....analysis......         f ∈ C [0,1] and  ∫_0 ^( 1) x^n f(x)dx=(1/(n+2)) , n∈N          prove  f(x):=x .....
..mathematical..analysisfC[0,1]and01xnf(x)dx=1n+2,nNprovef(x):=x..
Answered by mindispower last updated on 06/Jun/21
(1/(n+2))=∫_0 ^1 x^(n+1) dx  ⇒∫_0 ^1 x^n (f(x)−x)dx=0,∀n∈N  since f(x)∈C[0,1],∃p_m  of polynomial such that  lagrange theorem  ∣f(x)−p_m ∣→0  ⇒∀n∈N  ∫_0 ^1 x^n p_m (x)dx=0,p_m ∈R[X]  p_m (x)=Σ_(k=0) ^l ∫_0 ^1 a_k x^k .x^n dx=0⇒  Σ_(k=0) ^l (a_k /(k+n+1))=0we got infintie linear equation   ⇒(a_k )=0,∀k∈[0,l]  ⇒p_m =0,∀m∈N  ⇒∣p_m −x∣→0⇒p_m →x  ∣f(x)−x∣=∣f(x)−p_m +p_m −x∣≤∣p_m −x∣_0 +∣f(x)−p_m ∣_(=0)   ⇒of(x)−x=0⇒f(x)=x
1n+2=01xn+1dx01xn(f(x)x)dx=0,nNsincef(x)C[0,1],pmofpolynomialsuchthatlagrangetheoremf(x)pm∣→0nN01xnpm(x)dx=0,pmR[X]pm(x)=lk=001akxk.xndx=0lk=0akk+n+1=0wegotinfintielinearequation(ak)=0,k[0,l]pm=0,mN⇒∣pmx∣→0pmxf(x)x∣=∣f(x)pm+pmx∣⩽∣pmx0+f(x)pm=0of(x)x=0f(x)=x
Commented by mnjuly1970 last updated on 06/Jun/21
  bravo .. very nice mr power...
bravo..verynicemrpower
Commented by mindispower last updated on 06/Jun/21
pleasur i love maths but i/stopped befor  my graduation so sad
pleasurilovemathsbuti/stoppedbeformygraduationsosad
Commented by Ar Brandon last updated on 17/Jun/21
Oh ! Dommage ! Qu'est-ce qui s'est passé ?

Leave a Reply

Your email address will not be published. Required fields are marked *