Menu Close

mathematical-analysis-II-prove-that-R-n-0-x-2-n-n-2-dx-1-




Question Number 137420 by mnjuly1970 last updated on 02/Apr/21
             ......mathematical ... ... ... analysis(II).....         prove  that ::               Ω=∫_( R) (Σ_(n=0) ^∞ (((−x^2 )^n )/((n!)^2 )))dx=1                     ..........................
mathematicalanalysis(II)..provethat::Ω=R(n=0(x2)n(n!)2)dx=1..
Commented by Dwaipayan Shikari last updated on 03/Apr/21
∫_R Σ_(n≥0) ^∞ (((−x^2 )^n )/((n!)^(2s) ))dx=π^(1−s)   ∫_R Σ_(n≥0) ^∞ (((−x^2 )^n )/((n!)^2 ))=1
Rn0(x2)n(n!)2sdx=π1sRn0(x2)n(n!)2=1

Leave a Reply

Your email address will not be published. Required fields are marked *