Menu Close

mathematical-analysis-prove-that-n-0-1-1-2-2-n-2-




Question Number 141132 by mnjuly1970 last updated on 16/May/21
      ...mathematical ...analysis...      prove  that:           Π_(n=0) ^∞ (1+(1/2^2^n  ) ) =^?  2           ......
mathematicalanalysisprovethat:n=0(1+122n)=?2
Answered by Dwaipayan Shikari last updated on 16/May/21
Π_(n=0) ^∞ (1+(1/x^2^n  ))=Π_(n=0) ^∞ ((1−(1/x^2^(n+1)  ))/(1−(1/x^2^n  )))=((1−(1/x^2 ))/(1−(1/x))).((1−(1/x^4 ))/(1−(1/x^2 ))).((1−(1/x^8 ))/(1−(1/x^4 ))).((1−(1/x^(16) ))/(1−(1/x^8 )))...((1−(1/x^2^(N+1)  ))/(1−(1/x^2^N  )))  =lim_(N→∞) (x/(x−1)).(1−(1/x^2^(N+1)  ))=(x/(x−1))  x=2
n=0(1+1x2n)=n=011x2n+111x2n=11x211x.11x411x2.11x811x4.11x1611x811x2N+111x2N=limNxx1.(11x2N+1)=xx1x=2
Commented by mnjuly1970 last updated on 16/May/21
very nice..
verynice..

Leave a Reply

Your email address will not be published. Required fields are marked *