Menu Close

minimum-of-function-y-x-2-e-2x-is-




Question Number 78046 by jagoll last updated on 13/Jan/20
minimum of   function y = (√(x^2 +e^(2x) ))  is
$${minimum}\:{of}\: \\ $$$${function}\:{y}\:=\:\sqrt{{x}^{\mathrm{2}} +{e}^{\mathrm{2}{x}} }\:\:{is} \\ $$
Answered by john santu last updated on 13/Jan/20
y′ = ((2x+2e^(2x) )/(2(√(x^2 +e^(2x) )))) = 0  e^(2x)  = − x , x<0   1 = −xe^(−2x)  ⇒ use Lambert W  function
$${y}'\:=\:\frac{\mathrm{2}{x}+\mathrm{2}{e}^{\mathrm{2}{x}} }{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{e}^{\mathrm{2}{x}} }}\:=\:\mathrm{0} \\ $$$${e}^{\mathrm{2}{x}} \:=\:−\:{x}\:,\:{x}<\mathrm{0}\: \\ $$$$\mathrm{1}\:=\:−{xe}^{−\mathrm{2}{x}} \:\Rightarrow\:{use}\:{Lambert}\:{W}\:\:{function} \\ $$$$ \\ $$
Commented by john santu last updated on 13/Jan/20
2 =−2xe^(−2x)  ⇒W(2)= W(−2xe^(−2x) )  W(2)= −2x ⇒ x=−((W(2))/2)
$$\mathrm{2}\:=−\mathrm{2}{xe}^{−\mathrm{2}{x}} \:\Rightarrow{W}\left(\mathrm{2}\right)=\:{W}\left(−\mathrm{2}{xe}^{−\mathrm{2}{x}} \right) \\ $$$${W}\left(\mathrm{2}\right)=\:−\mathrm{2}{x}\:\Rightarrow\:{x}=−\frac{{W}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *