Menu Close

montrer-que-a-b-R-ona-2-ab-a-2-b-2-Endeduire-que-x-1-x-n-R-on-a-i-1-n-x-i-2-n-i-1-n-x-i-2-please-i-need-help-




Question Number 71508 by Cmr 237 last updated on 16/Oct/19
montrer que:∀a,b∈R ona  2∣ab∣≤a^2 +b^2   Endeduire que ∀x_1 ,...,x_n ∈R on a:  (Σ_(i=1) ^n ∣x_i ∣)^2 ≤nΣ_(i=1) ^n x_i ^2        please i need help
montrerque:a,bRona2ab∣⩽a2+b2Endeduirequex1,,xnRona:(ni=1xi)2nni=1xi2pleaseineedhelp
Commented by Cmr 237 last updated on 16/Oct/19
please can you prove it?
pleasecanyouproveit?
Commented by Prithwish sen last updated on 16/Oct/19
let  k= ((x_1 +x_2 +.......x_n )/n) .....(i)  now (x_1 /k),(x_2 /k),........(x_n /k) all are positive and not all  of them equal to 1  [(x_i /k)]^2 −1≥0  equality holds only (x_i /k) = 1  (i∈N)   now [(x_1 /k)]^2 +[(x_2 /k)]^2 +.....[(x_n /k)]^2 −n ≥ 2[(x_1 /k)+(x_2 /k)+.....+(x_n /k)−n]  (from given condition)  or, ((x_1 ^2 +x_2 ^2 +.... +x_n ^2 )/k^2 ) −n ≥ 2(n−n)  from (i)  or ((x_1 ^2 +x_2 ^2 +.......+x_n ^2 )/n) ≥ k^2   ⇒ x_1 ^2 +x_2 ^2 +......+x_n ^2  ≥ n(((x_1 +x_2 +.....+x_n )/n))^2   ⇒n𝚺_1 ^n (x_i )^2 ≥ (𝚺_1 ^n x_i  )^2   Hence proved.
letk=x1+x2+.xnn..(i)nowx1k,x2k,..xnkallarepositiveandnotallofthemequalto1[xik]210equalityholdsonlyxik=1(iN)now[x1k]2+[x2k]2+..[xnk]2n2[x1k+x2k+..+xnkn](fromgivencondition)or,x12+x22+.+xn2k2n2(nn)from(i)orx12+x22+.+xn2nk2x12+x22++xn2n(x1+x2+..+xnn)2Double subscripts: use braces to clarify
Answered by turbo msup by abdo last updated on 17/Oct/19
we hsve Σ_(i=1) ^n a_i b_i ≤(Σ_(i=1) ^n a_i ^2 )^(1/2) ×(Σ_(i=1) ^n b_i ^2 )^(1/2) (holder)  for all numbers positifs (a_i )snd (b_i )  let a_i =1 snd b_i =∣x_i ∣ ⇒  Σ_(i=1) ^n ∣x_i ∣≤(√n)×(Σ_(i=1) ^n x_i ^2 )^(1/2)  ⇒  (Σ_(i=1) ^n ∣x_i ∣)^2 ≤n ×(Σ_(i=1) ^n  x_i ^2 )
wehsvei=1naibi(i=1nai2)12×(i=1nbi2)12(holder)forallnumberspositifs(ai)snd(bi)letai=1sndbi=∣xii=1nxi∣⩽n×(i=1nxi2)12(i=1nxi)2n×(i=1nxi2)
Commented by Prithwish sen last updated on 17/Oct/19
Thank you sir.
Thankyousir.
Commented by mathmax by abdo last updated on 18/Oct/19
you are welcome.
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *