Menu Close

montrer-que-sinA-sinB-sinC-4cos-A-2-cos-B-2-cos-C-2-




Question Number 70394 by Cmr 237 last updated on 04/Oct/19
montrer que  sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
$$\mathrm{montrer}\:\mathrm{que} \\ $$$$\mathrm{sinA}+\mathrm{sinB}+\mathrm{sinC}=\mathrm{4cos}\frac{\mathrm{A}}{\mathrm{2}}\mathrm{cos}\frac{\mathrm{B}}{\mathrm{2}}\mathrm{cos}\frac{\mathrm{C}}{\mathrm{2}} \\ $$
Answered by $@ty@m123 last updated on 05/Oct/19
LHS=2sin ((A+B)/2)cos ((A−B)/2)+sin C  =2sin ((π−C)/2)cos ((A−B)/2)+sin C  =2cos  (C/2)cos ((A−B)/2)+2sin (C/2)cos (C/2)  =2cos  (C/2)(cos ((A−B)/2)+sin (C/2))  =2cos  (C/2)(cos ((A−B)/2)+cos  ((A+B)/2))  =2cos  (C/2)(2cos ((A−B+A+B)/4)cos  ((A−B−A−B)/4))  =4cos(A/2)cos(B/2)cos(C/2)  =RHS
$${LHS}=\mathrm{2sin}\:\frac{{A}+{B}}{\mathrm{2}}\mathrm{cos}\:\frac{{A}−{B}}{\mathrm{2}}+\mathrm{sin}\:{C} \\ $$$$=\mathrm{2sin}\:\frac{\pi−{C}}{\mathrm{2}}\mathrm{cos}\:\frac{{A}−{B}}{\mathrm{2}}+\mathrm{sin}\:{C} \\ $$$$=\mathrm{2cos}\:\:\frac{{C}}{\mathrm{2}}\mathrm{cos}\:\frac{{A}−{B}}{\mathrm{2}}+\mathrm{2sin}\:\frac{{C}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}} \\ $$$$=\mathrm{2cos}\:\:\frac{{C}}{\mathrm{2}}\left(\mathrm{cos}\:\frac{{A}−{B}}{\mathrm{2}}+\mathrm{sin}\:\frac{{C}}{\mathrm{2}}\right) \\ $$$$=\mathrm{2cos}\:\:\frac{{C}}{\mathrm{2}}\left(\mathrm{cos}\:\frac{{A}−{B}}{\mathrm{2}}+\mathrm{cos}\:\:\frac{{A}+{B}}{\mathrm{2}}\right) \\ $$$$=\mathrm{2cos}\:\:\frac{{C}}{\mathrm{2}}\left(\mathrm{2cos}\:\frac{{A}−{B}+{A}+{B}}{\mathrm{4}}\mathrm{cos}\:\:\frac{{A}−{B}−{A}−{B}}{\mathrm{4}}\right) \\ $$$$=\mathrm{4cos}\frac{\mathrm{A}}{\mathrm{2}}\mathrm{cos}\frac{\mathrm{B}}{\mathrm{2}}\mathrm{cos}\frac{\mathrm{C}}{\mathrm{2}} \\ $$$$={RHS} \\ $$
Commented by Cmr 237 last updated on 04/Oct/19
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *