Menu Close

N-0-1-2-N-0-I-know-that-if-S-k-0-1-2-S-N-0-Because-you-can-forever-pair-one-value-from-one-set-to-another-In-my-question-bellow-I-use-the-word-combine-




Question Number 5080 by FilupSmith last updated on 10/Apr/16
N = {0, 1, 2, ...}  ∣N∣ = ℵ_0     I know that:  if  S = {k, 0, 1, 2, ...}  ∴ ∣S∣ = ∣N∣ = ℵ_0   Because you can forever pair one value  from one set to another.    In my question bellow I use the word  ′combine′. What I mean is something  like this:  {1, 2, 3} + {2, 3, 4} = {1, 2, 3, 2, 3, 4}                                      or = {1, 2, 2, 3, 3, 4}  order doesn′t matter  i am unsure how to write this mathematically correct    My question is as follows:  If we combine ℵ_0  lots of sets, with each  set containing ℵ_0  values, is the total  values greater than ℵ_0  ?    e.g.  G = N + N + ... + N              ℵ_0  times  G = {0, 0, ..., 1, 1, ..., 2, 2, ...}  Is ∣G∣>ℵ_0 ?
$$\boldsymbol{{N}}\:=\:\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:…\right\} \\ $$$$\mid\boldsymbol{{N}}\mid\:=\:\aleph_{\mathrm{0}} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{know}\:\mathrm{that}: \\ $$$$\mathrm{if}\:\:\boldsymbol{{S}}\:=\:\left\{{k},\:\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:…\right\} \\ $$$$\therefore\:\mid\boldsymbol{{S}}\mid\:=\:\mid\boldsymbol{{N}}\mid\:=\:\aleph_{\mathrm{0}} \\ $$$$\mathrm{Because}\:\mathrm{you}\:\mathrm{can}\:\mathrm{forever}\:\mathrm{pair}\:\mathrm{one}\:\mathrm{value} \\ $$$$\mathrm{from}\:\mathrm{one}\:\mathrm{set}\:\mathrm{to}\:\mathrm{another}. \\ $$$$ \\ $$$$\mathrm{In}\:\mathrm{my}\:\mathrm{question}\:\mathrm{bellow}\:\mathrm{I}\:\mathrm{use}\:\mathrm{the}\:\mathrm{word} \\ $$$$'{combine}'.\:\mathrm{What}\:\mathrm{I}\:\mathrm{mean}\:\mathrm{is}\:\mathrm{something} \\ $$$$\mathrm{like}\:\mathrm{this}: \\ $$$$\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3}\right\}\:+\:\left\{\mathrm{2},\:\mathrm{3},\:\mathrm{4}\right\}\:=\:\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:=\:\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{2},\:\mathrm{3},\:\mathrm{3},\:\mathrm{4}\right\} \\ $$$${order}\:{doesn}'{t}\:{matter} \\ $$$${i}\:{am}\:{unsure}\:{how}\:{to}\:{write}\:{this}\:{mathematically}\:{correct} \\ $$$$ \\ $$$$\mathrm{My}\:\mathrm{question}\:\mathrm{is}\:\mathrm{as}\:\mathrm{follows}: \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{combine}\:\aleph_{\mathrm{0}} \:\mathrm{lots}\:\mathrm{of}\:\mathrm{sets},\:\mathrm{with}\:\mathrm{each} \\ $$$$\mathrm{set}\:\mathrm{containing}\:\aleph_{\mathrm{0}} \:\mathrm{values},\:\mathrm{is}\:\mathrm{the}\:\mathrm{total} \\ $$$$\mathrm{values}\:\mathrm{greater}\:\mathrm{than}\:\aleph_{\mathrm{0}} \:? \\ $$$$ \\ $$$${e}.{g}. \\ $$$$\boldsymbol{{G}}\:=\:\boldsymbol{{N}}\:+\:\boldsymbol{{N}}\:+\:…\:+\:\boldsymbol{{N}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\aleph_{\mathrm{0}} \:\mathrm{times} \\ $$$$\boldsymbol{{G}}\:=\:\left\{\mathrm{0},\:\mathrm{0},\:…,\:\mathrm{1},\:\mathrm{1},\:…,\:\mathrm{2},\:\mathrm{2},\:…\right\} \\ $$$$\mathrm{Is}\:\mid\boldsymbol{{G}}\mid>\aleph_{\mathrm{0}} ? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *