Menu Close

n-0-1-2021-n-n-n-0-1-2021-n-0-t-n-e-t-dt-




Question Number 143225 by Canebulok last updated on 11/Jun/21
Σ_(n=0) ^∞   (1/((2021^n )(n!))) = Σ_(n=0) ^∞    (1/((2021^n )(∫_0 ^( ∞) t^n .e^(−t)   dt)))
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{\left(\mathrm{2021}^{{n}} \right)\left({n}!\right)}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2021}^{{n}} \right)\left(\int_{\mathrm{0}} ^{\:\infty} {t}^{{n}} .{e}^{−{t}} \:\:{dt}\right)} \\ $$
Answered by Dwaipayan Shikari last updated on 11/Jun/21
Σ_(n=0) ^∞ (x^n /(n!))=e^x   Σ_(n=0) ^∞ (1/((2021)^n n!))=e^(1/2021)
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!}={e}^{{x}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2021}\right)^{{n}} {n}!}={e}^{\mathrm{1}/\mathrm{2021}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *