Menu Close

n-0-1-n-n-2n-3-4-pi-n-




Question Number 138598 by qaz last updated on 15/Apr/21
Σ_(n=0) ^∞ (((−1)^n )/(n!(2n+3)))((4/π))^n =?
n=0(1)nn!(2n+3)(4π)n=?
Answered by mr W last updated on 15/Apr/21
e^x =Σ_(n=0) ^∞ (x^n /(n!))  e^(−x^2 ) =Σ_(n=0) ^∞ (((−1)^n x^(2n) )/(n!))  x^2 e^(−x^2 ) =Σ_(n=0) ^∞ (((−1)^n x^(2n+2) )/(n!))  ∫_0 ^x x^2 e^(−x^2 ) dx=Σ_(n=0) ^∞ (((−1)^n )/(n!))∫_0 ^x x^(2n+2) dx  (((√π)erf(x)−2xe^(−x^2 ) )/4)=Σ_(n=0) ^∞ (((−1)^n x^(2n+3) )/(n!(2n+3)))  (((√π)erf(x)−2xe^(−x^2 ) )/(4x^3 ))=Σ_(n=0) ^∞ (((−1)^n x^(2n) )/(n!(2n+3)))  let x=(2/( (√π)))  Σ_(n=0) ^∞ (((−1)^n )/(n!(2n+3)))((4/π))^n =(((√π)erf((2/( (√π))))−(4/( (√π)))e^(−(4/π)) )/(4×(4/π)×(2/( (√π)))))             =((π^2 erf((2/( (√π))))−4πe^(−(4/π)) )/(32))
ex=n=0xnn!ex2=n=0(1)nx2nn!x2ex2=n=0(1)nx2n+2n!0xx2ex2dx=n=0(1)nn!0xx2n+2dxπerf(x)2xex24=n=0(1)nx2n+3n!(2n+3)πerf(x)2xex24x3=n=0(1)nx2nn!(2n+3)letx=2πn=0(1)nn!(2n+3)(4π)n=πerf(2π)4πe4π4×4π×2π=π2erf(2π)4πe4π32

Leave a Reply

Your email address will not be published. Required fields are marked *