Menu Close

n-0-sin-n-1-x-4-n-1-




Question Number 139826 by qaz last updated on 01/May/21
Σ_(n=0) ^∞ ((sin [(n−1)x])/4^(n+1) )=?
n=0sin[(n1)x]4n+1=?
Answered by mnjuly1970 last updated on 01/May/21
     Ω:=Σ_(n=0) ^∞ ((sin((n−1)x))/4^(n+1) )=(1/4)ImΣ_(n=0) ^∞ (e^(i(n−1)x) /4^n )         :=(1/4)Im{(e^(ix) )Σ_(n=0) ^∞ (e^(inx) /4^n )}         := (1/4)Im{(e^(ix) )Σ_(n=0) ^∞ ((e^(ix) /4))^n }          :=(1/4) Im{(e^(ix) )((1/(1−(e^(ix) /4))))}         :=Im((cos(x)+isin(x)).((1/(4−cos(x)−isin(x)))))          :=Im{(cos(x)+isin(x)}.Im{((4−cos(x)+isin(x))/(16−8cos(x)+1))}         := (sin(x)).(((sin(x))/(17−8cos(x))))=((sin^2 (x))/(17−8cos(x))) ...
Ω:=n=0sin((n1)x)4n+1=14Imn=0ei(n1)x4n:=14Im{(eix)n=0einx4n}:=14Im{(eix)n=0(eix4)n}:=14Im{(eix)(11eix4)}:=Im((cos(x)+isin(x)).(14cos(x)isin(x))):=Im{(cos(x)+isin(x)}.Im{4cos(x)+isin(x)168cos(x)+1}:=(sin(x)).(sin(x)178cos(x))=sin2(x)178cos(x)
Answered by Dwaipayan Shikari last updated on 01/May/21
Σ_(n=1) ^∞ ((sin(nx)cos2x−cos(nx)sin(2x))/(4^n  ))  =(1/(2i))cos2xΣ_(n=1) ^∞ ((e^(ix) /4))^n −((e^(−ix) /4))^n −(1/2)sin(2x)Σ_(n=1) ^∞ ((e^(ix) /4))^n +((e^(−ix) /4))^n   =((cos(2x))/(2i))((1/(1−(e^(ix) /4)))−(1/(1−(e^(−ix) /4))))−((sin(2x))/2)((1/(1−(e^(ix) /4)))+(1/(1−(e^(−ix) /4))))  =((cos(2x))/(2i))((4/(4−e^(ix) ))−(4/(4−e^(−ix) )))−((sin(2x))/2)((4/(4−e^(ix) ))+(4/(4−e^(−ix) )))  =((4cos(2x))/(2i))(((2isin(x))/(16−2cosx+1)))−((sin(2x))/2)(((8−2cosx)/(16−2cosx+1)))  =((4cos(2x)sin(x)−4sin(2x)+sin(2x)cos(x))/(17−2cosx))...
n=1sin(nx)cos2xcos(nx)sin(2x)4n=12icos2xn=1(eix4)n(eix4)n12sin(2x)n=1(eix4)n+(eix4)n=cos(2x)2i(11eix411eix4)sin(2x)2(11eix4+11eix4)=cos(2x)2i(44eix44eix)sin(2x)2(44eix+44eix)=4cos(2x)2i(2isin(x)162cosx+1)sin(2x)2(82cosx162cosx+1)=4cos(2x)sin(x)4sin(2x)+sin(2x)cos(x)172cosx

Leave a Reply

Your email address will not be published. Required fields are marked *