Menu Close

n-1-1-1-n-4-




Question Number 142150 by iloveisrael last updated on 27/May/21
     Π_(n=1) ^∞  (1+(1/n^4 )) =?
n=1(1+1n4)=?
Commented by liberty last updated on 27/May/21
Π_(n=1) ^∞ (1+(1/n^4 ))=−((sin (((−1))^(1/4)  π)sin ((((−1)^3 ))^(1/4)  π))/π^2 )
n=1(1+1n4)=sin(14π)sin((1)34π)π2
Answered by Dwaipayan Shikari last updated on 27/May/21
Π_(n=1) ^∞ (1+(1/n^4 ))=Π_(n=1) ^∞ (1+(((√i)/n))^2 )(1−(((√i)/n))^2 )  =((sinh((√i)π))/(4π^2 )).((sin((√i)π))/i)=−(((e^(((1+i)/( (√2)))π) −e^(−((1+i)/( (√2)))π) )(e^((i/( (√2)))−(1/( (√2)))π) −e^(−(i/( (√2)))+(1/( (√2)))π) ))/(4π^2 ))  =−((e^((√2)iπ) −e^(−(√2)π) −e^(√(2π)) +e^(−(√2)iπ) )/(4π^2 ))=((cosh((√2)π)−cos((√2)π))/(2π^2 ))
n=1(1+1n4)=n=1(1+(in)2)(1(in)2)=sinh(iπ)4π2.sin(iπ)i=(e1+i2πe1+i2π)(ei212πei2+12π)4π2=e2iπe2πe2π+e2iπ4π2=cosh(2π)cos(2π)2π2

Leave a Reply

Your email address will not be published. Required fields are marked *