Menu Close

n-1-1-10-n-




Question Number 75828 by 21042004 last updated on 18/Dec/19
Σ_(n=1) ^∞ (1/(10^n ))
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{10}^{{n}} } \\ $$
Commented by mathmax by abdo last updated on 18/Dec/19
Σ_(n=1) ^∞  (1/(10^n )) =Σ_(n=0) ^∞ ((1/(10)))^n −1 =(1/(1−(1/(10))))−1 =((10)/9)−1 =(1/9)
$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{10}^{{n}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{10}}\right)^{{n}} −\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{10}}}−\mathrm{1}\:=\frac{\mathrm{10}}{\mathrm{9}}−\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{9}} \\ $$
Answered by MJS last updated on 18/Dec/19
=.1+.01+.001+...=.1^(.) =(1/9)
$$=.\mathrm{1}+.\mathrm{01}+.\mathrm{001}+…=.\overset{.} {\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *