Menu Close

n-1-1-n-2n-1-2n-pi-2-2n-n-1-2n-1-2n-pi-2-2-n-2xD-1-x-pi-2-n-1-x-2-n-2n-2xD-1-x-pi-2-n-0-x-2-n-2n-




Question Number 142629 by qaz last updated on 03/Jun/21
Σ_(n=1) ^∞ (−1)^n ∙((2n−1)/((2n)!))∙((π/2))^(2n)   =Σ_(n=1) ^∞ ((2n−1)/((2n)!))∙(−((π/2))^2 )^n   =(2xD−1)∣_(x=π/2) Σ_(n=1) ^∞ (((−x^2 )^n )/((2n)!))  =(2xD−1)∣_(x=π/2) [Σ_(n=0) ^∞ (((−x^2 )^n )/((2n)!))−1]  =(2xD−1)∣_(x=π/2) (cos x−1)  =(−2xsin x−cos x+1)∣_(x=π/2)   =1−π  where is wrong?
n=1(1)n2n1(2n)!(π2)2n=n=12n1(2n)!((π2)2)n=(2xD1)x=π/2n=1(x2)n(2n)!=(2xD1)x=π/2[n=0(x2)n(2n)!1]=(2xD1)x=π/2(cosx1)=(2xsinxcosx+1)x=π/2=1πwhereiswrong?
Answered by Dwaipayan Shikari last updated on 03/Jun/21
Σ_(n=1) ^∞ (((−1)^n (2n))/((2n)!))((π/2))^(2n) −(((−1)^n )/((2n)!))((π/2))^(2n)   =−((2/(2!))((π/2))^2 −(4/(4!))((π/2))^4 +(6/(6!))((π/2))^6 +...)+((1/(2!))((π/2))^2 −(1/(4!))((π/2))^4 +..)  =−(π/2)((π/2)−(1/(3!))((π/2))^3 +..)−(1−(1/(2!))((π/2))^2 −...)+1  =−(π/2)sin((π/2))−cos((π/2))+1=1−(π/2)
n=1(1)n(2n)(2n)!(π2)2n(1)n(2n)!(π2)2n=(22!(π2)244!(π2)4+66!(π2)6+)+(12!(π2)214!(π2)4+..)=π2(π213!(π2)3+..)(112!(π2)2)+1=π2sin(π2)cos(π2)+1=1π2
Commented by qaz last updated on 03/Jun/21
i have another solution.  Σ_(n=1) ^∞ (((−1)^n (2n−1))/((2n)!))x^(2n) ∣_(x=(π/2))   =Σ_(n=0) ^∞ (((−1)^(n+1) (2n+1))/((2n+2)!))x^(2n+2) ∣_(x=(π/2))   =−x^2 Σ_(n=0) ^∞ (((−1)^n )/((2n+2)(2n)!))x^(2n)   =−x^2 ∫_0 ^1 yΣ_(n=0) ^∞ (((−1)^n )/((2n)!))∙(xy)^(2n) dy  =−x^2 ∫_0 ^1 ycos (xy)dy  =−x^2 {[(1/x)ysin (xy)+(1/x^2 )cos (xy)]_0 ^1 }_(x=(π/2))   =−x^2 {(1/x)sin x+(1/x^2 )(cos x−1)}_(x=(π/2))   =1−(π/2)  −−−−−−−−−−−−−−−−−−−  but Σ_(n=1) ^∞ (2n−1)(((−1)^n )/((2n)!))x^(2n) =(xD−1)(cos x−1),  i still dont understand,why not LFT=(2xD−1)(cos x−1)???
ihaveanothersolution.n=1(1)n(2n1)(2n)!x2nx=π2=n=0(1)n+1(2n+1)(2n+2)!x2n+2x=π2=x2n=0(1)n(2n+2)(2n)!x2n=x201yn=0(1)n(2n)!(xy)2ndy=x201ycos(xy)dy=x2{[1xysin(xy)+1x2cos(xy)]01}x=π2=x2{1xsinx+1x2(cosx1)}x=π2=1π2butn=1(2n1)(1)n(2n)!x2n=(xD1)(cosx1),istilldontunderstand,whynotLFT=(2xD1)(cosx1)???

Leave a Reply

Your email address will not be published. Required fields are marked *