n-1-1-n-2n-1-2n-pi-2-2n-n-1-2n-1-2n-pi-2-2-n-2xD-1-x-pi-2-n-1-x-2-n-2n-2xD-1-x-pi-2-n-0-x-2-n-2n- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 142629 by qaz last updated on 03/Jun/21 ∑∞n=1(−1)n⋅2n−1(2n)!⋅(π2)2n=∑∞n=12n−1(2n)!⋅(−(π2)2)n=(2xD−1)∣x=π/2∑∞n=1(−x2)n(2n)!=(2xD−1)∣x=π/2[∑∞n=0(−x2)n(2n)!−1]=(2xD−1)∣x=π/2(cosx−1)=(−2xsinx−cosx+1)∣x=π/2=1−πwhereiswrong? Answered by Dwaipayan Shikari last updated on 03/Jun/21 ∑∞n=1(−1)n(2n)(2n)!(π2)2n−(−1)n(2n)!(π2)2n=−(22!(π2)2−44!(π2)4+66!(π2)6+…)+(12!(π2)2−14!(π2)4+..)=−π2(π2−13!(π2)3+..)−(1−12!(π2)2−…)+1=−π2sin(π2)−cos(π2)+1=1−π2 Commented by qaz last updated on 03/Jun/21 ihaveanothersolution.∑∞n=1(−1)n(2n−1)(2n)!x2n∣x=π2=∑∞n=0(−1)n+1(2n+1)(2n+2)!x2n+2∣x=π2=−x2∑∞n=0(−1)n(2n+2)(2n)!x2n=−x2∫01y∑∞n=0(−1)n(2n)!⋅(xy)2ndy=−x2∫01ycos(xy)dy=−x2{[1xysin(xy)+1x2cos(xy)]01}x=π2=−x2{1xsinx+1x2(cosx−1)}x=π2=1−π2−−−−−−−−−−−−−−−−−−−but∑∞n=1(2n−1)(−1)n(2n)!x2n=(xD−1)(cosx−1),istilldontunderstand,whynotLFT=(2xD−1)(cosx−1)??? Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-77091Next Next post: if-f-x-g-y-then-why-d-dx-f-x-d-dy-g-y- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.