Menu Close

n-1-2-3-3-n-0-8-3n-0-8-3-3-3n-0-8-1-Simplify-




Question Number 5022 by love math last updated on 03/Apr/16
((n^(1.2) −3(√3))/(n^(0.8) −(√(3n^(0.8) ))+3))−(√3)((√(3n^(0.8) ))−1)    Simplify
$$\frac{{n}^{\mathrm{1}.\mathrm{2}} −\mathrm{3}\sqrt{\mathrm{3}}}{{n}^{\mathrm{0}.\mathrm{8}} −\sqrt{\mathrm{3}{n}^{\mathrm{0}.\mathrm{8}} }+\mathrm{3}}−\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}{n}^{\mathrm{0}.\mathrm{8}} }−\mathrm{1}\right) \\ $$$$ \\ $$$${Simplify} \\ $$
Commented by prakash jain last updated on 04/Apr/16
Substitute to ease process of simplification  n^(.4) =a  (√3)=b  ((a^3 −b^3 )/(a^2 −ab+b^2 ))−b(ab−1)  It looks the question is probably mistyped  the first probably was ((n^(1.2) −3(√3))/(n^(0.8) +(√(3n^(0.8) ))+3))  In that case first part simplifies to  ((a^3 −b^3 )/(a^2 +ab+b^2 ))−b(ab−1)  =(((a−b)(a^2 +ab+b^2 ))/((a^2 +ab+b^2 )))−b(ab−1)  =a−b−ab^2 +b  =a−ab^2   =a(1−b^2 )  =−2n^(0.4)
$$\mathrm{Substitute}\:\mathrm{to}\:\mathrm{ease}\:\mathrm{process}\:\mathrm{of}\:\mathrm{simplification} \\ $$$${n}^{.\mathrm{4}} ={a} \\ $$$$\sqrt{\mathrm{3}}={b} \\ $$$$\frac{{a}^{\mathrm{3}} −{b}^{\mathrm{3}} }{{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} }−{b}\left({ab}−\mathrm{1}\right) \\ $$$$\mathrm{It}\:\mathrm{looks}\:\mathrm{the}\:\mathrm{question}\:\mathrm{is}\:\mathrm{probably}\:\mathrm{mistyped} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{probably}\:\mathrm{was}\:\frac{{n}^{\mathrm{1}.\mathrm{2}} −\mathrm{3}\sqrt{\mathrm{3}}}{{n}^{\mathrm{0}.\mathrm{8}} +\sqrt{\mathrm{3}{n}^{\mathrm{0}.\mathrm{8}} }+\mathrm{3}} \\ $$$$\mathrm{In}\:\mathrm{that}\:\mathrm{case}\:\mathrm{first}\:\mathrm{part}\:\mathrm{simplifies}\:\mathrm{to} \\ $$$$\frac{{a}^{\mathrm{3}} −{b}^{\mathrm{3}} }{{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} }−{b}\left({ab}−\mathrm{1}\right) \\ $$$$=\frac{\left({a}−{b}\right)\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)}{\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)}−{b}\left({ab}−\mathrm{1}\right) \\ $$$$={a}−{b}−{ab}^{\mathrm{2}} +{b} \\ $$$$={a}−{ab}^{\mathrm{2}} \\ $$$$={a}\left(\mathrm{1}−{b}^{\mathrm{2}} \right) \\ $$$$=−\mathrm{2}{n}^{\mathrm{0}.\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *