Menu Close

n-1-5-1-4-n-1-




Question Number 10671 by Saham last updated on 22/Feb/17
Σ_(n = 1) ^∞ 5((1/4))^(n − 1)
$$\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{5}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{n}\:−\:\mathrm{1}} \\ $$
Answered by FilupS last updated on 22/Feb/17
S=5Σ_(n=1) ^∞ (1/4^(n−1) )  S=5((1/4^0 )+(1/4^1 )+(1/4^2 )+...)  (1/5)S=((1/4^0 )+(1/4^1 )+(1/4^2 )+...)  (1/5)S=(1/4^0 )+((1/4^1 )+(1/4^2 )+(1/4^3 )+...)  (1/5)S=1+(1/4)((1/4^0 )+(1/4^1 )+(1/4^2 )+...)  (1/5)S=1+(1/4)((1/5)S)  (1/5)S=1+(1/(20))S  ((1/5)−(1/(20)))S=1  (((20−5)/(100)))S=1  ((15)/(100))S=1  (3/(20))S=1  S=((20)/3)
$${S}=\mathrm{5}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{n}−\mathrm{1}} } \\ $$$${S}=\mathrm{5}\left(\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{0}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+…\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}{S}=\left(\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{0}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+…\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}{S}=\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{0}} }+\left(\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{3}} }+…\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}{S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{0}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+…\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}{S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{5}}{S}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}{S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{20}}{S} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{20}}\right){S}=\mathrm{1} \\ $$$$\left(\frac{\mathrm{20}−\mathrm{5}}{\mathrm{100}}\right){S}=\mathrm{1} \\ $$$$\frac{\mathrm{15}}{\mathrm{100}}{S}=\mathrm{1} \\ $$$$\frac{\mathrm{3}}{\mathrm{20}}{S}=\mathrm{1} \\ $$$${S}=\frac{\mathrm{20}}{\mathrm{3}} \\ $$
Commented by Saham last updated on 22/Feb/17
wow, i really appreciate.
$$\mathrm{wow},\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Commented by Saham last updated on 22/Feb/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by mrW1 last updated on 22/Feb/17
an other way:    G.P. with  a_1 =5  q=(1/4)  Sn=((a_1 (1−q^n ))/(1−q))=((5(1−((1/4))^n ))/(1−(1/4)))=((20)/3)(1−(1/4^n ))  lim_(n→0)  S_n =((20)/3)
$${an}\:{other}\:{way}: \\ $$$$ \\ $$$${G}.{P}.\:{with} \\ $$$${a}_{\mathrm{1}} =\mathrm{5} \\ $$$${q}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${Sn}=\frac{{a}_{\mathrm{1}} \left(\mathrm{1}−{q}^{{n}} \right)}{\mathrm{1}−{q}}=\frac{\mathrm{5}\left(\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{n}} \right)}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}=\frac{\mathrm{20}}{\mathrm{3}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}^{{n}} }\right) \\ $$$$\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{S}_{{n}} =\frac{\mathrm{20}}{\mathrm{3}} \\ $$
Commented by Saham last updated on 22/Feb/17
Great, God bless you sir.
$$\mathrm{Great},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by Saham last updated on 22/Feb/17
Thanks for your help.
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{help}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *