Menu Close

n-1-cos-pi-e-n-n-4-




Question Number 133708 by Dwaipayan Shikari last updated on 23/Feb/21
Σ_(n=1) ^∞ ((cos((π+e)n))/n^4 )
n=1cos((π+e)n)n4
Answered by mindispower last updated on 24/Feb/21
Σ_(n≥1) ((sin(nx))/n)=Im Σ_(n≥1) (e^(inx) /n)=Im(−ln(1−e^(ix) ))  −arctan(((−sin(x))/(1−cos(x)))))  =−(arctan(((1−cos(x))/(−sin(x)))−(π/2))=((π−x)/2)  ⇒Σ_(n≥1) ((−cos(nx))/n^2 )=(π/2)x−(x^2 /4)+c  ⇒−Σ((cos(nx))/n^2 )=((πx)/2)−(x^2 /4)−(π^2 /6)  −Σ_(n≥1) ((sin(nx))/n^3 )=((πx^2 )/4)−(x^3 /(12))−(π^2 /6)x  ⇒Σ_(n≥1) ((cos(nx))/n^4 )=((πx^3 )/(12))−(x^4 /(48))−((π^2 x^2 )/(12))+c,x=0⇒  c=ζ(4)  x=π+e  Σ_(n≥1) ((cos(π+e)n)/n^4 )=(π/(12))(π+e)^3 −(((π+e)^4 )/(48))−(π^2 /(12))(π+e)^2 +ζ(4)
n1sin(nx)n=Imn1einxn=Im(ln(1eix))arctan(sin(x)1cos(x)))=(arctan(1cos(x)sin(x)π2)=πx2n1cos(nx)n2=π2xx24+cΣcos(nx)n2=πx2x24π26n1sin(nx)n3=πx24x312π26xn1cos(nx)n4=πx312x448π2x212+c,x=0c=ζ(4)x=π+en1cos(π+e)nn4=π12(π+e)3(π+e)448π212(π+e)2+ζ(4)
Commented by Dwaipayan Shikari last updated on 24/Feb/21
Great sir! I have also found so...
Greatsir!Ihavealsofoundso

Leave a Reply

Your email address will not be published. Required fields are marked *