n-1-tan-1-1-2n-2-except-use-tan-1-1-2n-2-tan-1-1-2n-1-tan-1-1-2n-1-any-other-way- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 137721 by Ñï= last updated on 05/Apr/21 ∑∞n=1tan−112n2=?exceptusetan−112n2=tan−112n−1−tan−112n+1,anyotherway? Answered by TANMAY PANACEA last updated on 05/Apr/21 tan−1(24n2)=tan−1(21+4n2−1)=tan−1((2n+1)−(2n−1)1+(2n+1)(2n−1))=tan−1(2n+1)−tan−1(2n−1)Tn=tan−1(2n+1)−tan−1(2n−1)T1=tan−1(3)−tan−1(1)T2=tan−1(5)−tan−1(3)T3=tan−1(7)−tan−2(5)……Tn=tan−1(2n+1)−tan−1(2n−1)addthemSn=tan−1(2n+1)−tan−1(1)whenn→∞tan−1(2n+1)→tan−1(∞)=π2soS∞=π2−tan−1(1)=π2−π4=π4Tanmay Commented by Ñï= last updated on 06/Apr/21 thankssir Commented by TANMAY PANACEA last updated on 06/Apr/21 mostwelcome Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-137723Next Next post: 3-x-4-x-5-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.