Menu Close

n-a-n-n-1-2-b-n-n-1-2-1-2a-2-pi-0-e-t-2-2-1-a-ab-cosh-log-ab-t-a-3-b-2a-ab-cosh-log-ab-t-dt-




Question Number 136850 by Dwaipayan Shikari last updated on 26/Mar/21
Σ_(n=−∞) ^∞ a^((n(n+1))/2) b^((n(n−1))/2) =1+(√((2a^2 )/π))∫_0 ^∞ e^(−t^2 /2) (((1−a(√(ab)) cosh((√(log(ab))) t))/(a^3 b−2a(√(ab )) cosh((√(log(ab))) t))))dt
$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{a}^{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}} {b}^{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}} =\mathrm{1}+\sqrt{\frac{\mathrm{2}{a}^{\mathrm{2}} }{\pi}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}^{\mathrm{2}} /\mathrm{2}} \left(\frac{\mathrm{1}−{a}\sqrt{{ab}}\:{cosh}\left(\sqrt{{log}\left({ab}\right)}\:{t}\right)}{{a}^{\mathrm{3}} {b}−\mathrm{2}{a}\sqrt{{ab}\:}\:{cosh}\left(\sqrt{{log}\left({ab}\right)}\:{t}\right)}\right){dt} \\ $$
Commented by Dwaipayan Shikari last updated on 26/Mar/21
I have found this on Wikipedia . Any idea how to prove?
$${I}\:{have}\:{found}\:{this}\:{on}\:{Wikipedia}\:.\:{Any}\:{idea}\:{how}\:{to}\:{prove}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *