Question Number 134931 by metamorfose last updated on 08/Mar/21
$${n}\:{an}\:{integer}\:,\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{{t}^{{n}} +\mathrm{1}}{dt}=…??\: \\ $$
Answered by Dwaipayan Shikari last updated on 08/Mar/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{{n}} +\mathrm{1}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{t}^{{n}} }{\mathrm{1}−{t}^{\mathrm{2}{n}} }{dt}\:\:\:\:\:{t}^{\mathrm{2}{n}} ={u} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\mathrm{1}−\mathrm{2}{n}} −{t}^{\mathrm{1}−{n}} }{\mathrm{1}−{u}}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\frac{\mathrm{1}}{\mathrm{2}{n}}−\mathrm{1}} −{u}^{\frac{\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}−{u}}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}}\psi\left(\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}{n}}\psi\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right) \\ $$