Menu Close

N-lim-x-1-x-2-1-x-1-x-3-1-




Question Number 134665 by EDWIN88 last updated on 06/Mar/21
N = lim_(x→1)  (((√(x^2 −1)) + (√(x−1)))/( (√(x^3 −1)))) =?
$$\mathscr{N}\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:+\:\sqrt{\mathrm{x}−\mathrm{1}}}{\:\sqrt{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}}\:=? \\ $$
Answered by benjo_mathlover last updated on 06/Mar/21
N = lim_(x→1)  (((√(x−1)) {(√(x+1))+1 })/( (√(x−1)) {(√(x^2 +x+1)) }))  N = lim_(x→1)  (((√(x+1)) + 1)/( (√(x^2 +x+1)))) = (((√2) +1)/( (√3)))  N = ((√6)/3) + ((√3)/3)
$$\mathscr{N}\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}−\mathrm{1}}\:\left\{\sqrt{\mathrm{x}+\mathrm{1}}+\mathrm{1}\:\right\}}{\:\sqrt{\mathrm{x}−\mathrm{1}}\:\left\{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:\right\}} \\ $$$$\mathscr{N}\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}+\mathrm{1}}\:+\:\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}}\:=\:\frac{\sqrt{\mathrm{2}}\:+\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathscr{N}\:=\:\frac{\sqrt{\mathrm{6}}}{\mathrm{3}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *