Menu Close

n-R-R-n-N-n-t-n-d-n-dt-n-1-t-1-1-1-2-t-2-1-1-2-1-1-3-t-3-1-1-3-1-1-3-1-1-




Question Number 1023 by 123456 last updated on 20/May/15
φ_n :R→R  n∈N^∗   φ_n =t^n (d^n φ/dt^n )  φ_1 (t)=?,φ_1 (1)=+1  φ_2 (t)=?,φ_2 (1)=−1,φ_2 ^′ (1)=+1  φ_3 (t)=?,φ_3 (1)=+1,φ_3 ^′ (1)=−1,φ_3 ^(′′) (1)=+1
ϕn:RRnNϕn=tndnϕdtnϕ1(t)=?,ϕ1(1)=+1ϕ2(t)=?,ϕ2(1)=1,ϕ2(1)=+1ϕ3(t)=?,ϕ3(1)=+1,ϕ3(1)=1,ϕ3(1)=+1
Commented by prakash jain last updated on 21/May/15
φ_1 (t)=t((dφ_1 (t))/dt)⇒ln y=ln t+C  φ_1 (t)=kt  φ_1 (1)=1⇒k=1  φ_1 (t)=t
ϕ1(t)=tdϕ1(t)dtlny=lnt+Cϕ1(t)=ktϕ1(1)=1k=1ϕ1(t)=t
Answered by prakash jain last updated on 21/May/15
φ_2 (t)=t^2 (d^2 φ_2 /dt^2 )  t=e^x   (dφ_2 /dt)=e^(−x) (dφ_2 /dx), (d^2 φ_2 /dt)=((d^2 φ_2 /dx^2 )−(dφ_2 /dx))e^(−2x)   φ_2 =φ_2 ^(′′) −φ_2 ^′   φ_2 ^(′′) −φ_2 ^′ −φ_2 =0  characteristic equation  r^2 −r−1=0  r_1 ,r_2 =((1±(√5))/2)  φ_2 (x)=c_1 e^(r_1 x) +c_2 e^(r_2 x)   φ_2 (t)=c_1 t^r_1  +c_2 t^r_2    φ_2 (t)=−1⇒c_1 +c_2 =−1  φ_2 ′=c_1 r_1 t^(r_1 −1) +c_2 r_2 t^(r_2 −1)   φ_2 ′(1)=1  1=c_1 r_1 +c_2 r_2 =c_1 (((1+(√5))/2))−c_1 (((1−(√5))/2))−((1−(√5))/2)  1+((1−(√5))/2)=c_1 (√5)⇒c_1 =((3−(√5))/( (√5)))  c_2 =−1−c_1 =−1−((3−(√5))/( (√5)))=((2(√5)−3)/2)  φ_2 (t)=c_1 x^r_1  +c_2 x^r_2  , r_1 =((1+(√5))/2), r_2 =((1−(√5))/2)
ϕ2(t)=t2d2ϕ2dt2t=exdϕ2dt=exdϕ2dx,d2ϕ2dt=(d2ϕ2dx2dϕ2dx)e2xϕ2=ϕ2ϕ2ϕ2ϕ2ϕ2=0characteristicequationr2r1=0r1,r2=1±52ϕ2(x)=c1er1x+c2er2xϕ2(t)=c1tr1+c2tr2ϕ2(t)=1c1+c2=1ϕ2=c1r1tr11+c2r2tr21ϕ2(1)=11=c1r1+c2r2=c1(1+52)c1(152)1521+152=c15c1=355c2=1c1=1355=2532ϕ2(t)=c1xr1+c2xr2,r1=1+52,r2=152

Leave a Reply

Your email address will not be published. Required fields are marked *