Menu Close

need-help-with-step-by-step-thanks-x-x-4-x-1-2x-x-4-




Question Number 7234 by WagST last updated on 17/Aug/16
need help with step by step. thanks.    x(x+4)(x−1)=2x(x+4)
$${need}\:{help}\:{with}\:{step}\:{by}\:{step}.\:{thanks}. \\ $$$$ \\ $$$${x}\left({x}+\mathrm{4}\right)\left({x}−\mathrm{1}\right)=\mathrm{2}{x}\left({x}+\mathrm{4}\right) \\ $$$$ \\ $$$$ \\ $$
Answered by Yozzia last updated on 17/Aug/16
x(x+4)(x−1)=2x(x+4)   (∗)  Adding  −2x(x+4) on both sides of (∗) gives  x(x+4)(x−1)−2x(x+4)=2x(x+4)−2x(x+4)  ∵ 2x(x+4)−2x(x+4)=0  ∴ x(x+4)(x−1)−2x(x+4)=0  By the distributive law a(b+c)=ab+bc  ⇒ x(x+4)[(x−1)−2]=0  ⇒ x(x+4)[x−3]=0  Now, in general, a product a×b×c×...×z=0  iff at least one of a,b,c,...,z is zero.  Hence for x(x+4)(x−3)=0 at least  one of x, (x+4) or (x−3) is zero.  ∴ x=0 or x=−4 or x=3.
$${x}\left({x}+\mathrm{4}\right)\left({x}−\mathrm{1}\right)=\mathrm{2}{x}\left({x}+\mathrm{4}\right)\:\:\:\left(\ast\right) \\ $$$${Adding}\:\:−\mathrm{2}{x}\left({x}+\mathrm{4}\right)\:{on}\:{both}\:{sides}\:{of}\:\left(\ast\right)\:{gives} \\ $$$${x}\left({x}+\mathrm{4}\right)\left({x}−\mathrm{1}\right)−\mathrm{2}{x}\left({x}+\mathrm{4}\right)=\mathrm{2}{x}\left({x}+\mathrm{4}\right)−\mathrm{2}{x}\left({x}+\mathrm{4}\right) \\ $$$$\because\:\mathrm{2}{x}\left({x}+\mathrm{4}\right)−\mathrm{2}{x}\left({x}+\mathrm{4}\right)=\mathrm{0} \\ $$$$\therefore\:{x}\left({x}+\mathrm{4}\right)\left({x}−\mathrm{1}\right)−\mathrm{2}{x}\left({x}+\mathrm{4}\right)=\mathrm{0} \\ $$$${By}\:{the}\:{distributive}\:{law}\:{a}\left({b}+{c}\right)={ab}+{bc} \\ $$$$\Rightarrow\:{x}\left({x}+\mathrm{4}\right)\left[\left({x}−\mathrm{1}\right)−\mathrm{2}\right]=\mathrm{0} \\ $$$$\Rightarrow\:{x}\left({x}+\mathrm{4}\right)\left[{x}−\mathrm{3}\right]=\mathrm{0} \\ $$$${Now},\:{in}\:{general},\:{a}\:{product}\:{a}×{b}×{c}×…×{z}=\mathrm{0} \\ $$$${iff}\:{at}\:{least}\:{one}\:{of}\:{a},{b},{c},…,{z}\:{is}\:{zero}. \\ $$$${Hence}\:{for}\:{x}\left({x}+\mathrm{4}\right)\left({x}−\mathrm{3}\right)=\mathrm{0}\:{at}\:{least} \\ $$$${one}\:{of}\:{x},\:\left({x}+\mathrm{4}\right)\:{or}\:\left({x}−\mathrm{3}\right)\:{is}\:{zero}. \\ $$$$\therefore\:{x}=\mathrm{0}\:{or}\:{x}=−\mathrm{4}\:{or}\:{x}=\mathrm{3}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *