Menu Close

Nice-Calculus-0-1-1-x-1-3-1-x-1-5-1-x-1-7-ln-x-1-3-dx-m-n-




Question Number 142318 by mnjuly1970 last updated on 29/May/21
                Nice...≽≽≽∗∗∗≼≼≼...Calculus             Ω:=∫_0 ^( 1) (((1−(x)^(1/3)  )(1−((x ))^(1/5)  )(1−(x)^(1/7)  ))/(ln( ((x  ))^(1/3)  ))) dx=?         ....m.n
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Nice}…\succcurlyeq\succcurlyeq\succcurlyeq\ast\ast\ast\preccurlyeq\preccurlyeq\preccurlyeq…{Calculus} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{{x}}\:\right)\left(\mathrm{1}−\sqrt[{\mathrm{5}}]{{x}\:}\:\right)\left(\mathrm{1}−\sqrt[{\mathrm{7}}]{{x}}\:\right)}{{ln}\left(\:\sqrt[{\mathrm{3}}]{{x}\:\:}\:\right)}\:{dx}=? \\ $$$$\:\:\:\:\:\:\:….{m}.{n} \\ $$
Answered by Dwaipayan Shikari last updated on 29/May/21
K(a)=∫_0 ^1 (((1−x^a )(1−(x)^(1/5) )(1−(x)^(1/7) ))/(log(x)))dx  K′(a)=−∫_0 ^1 x^a (1−(x)^(1/5) )(1−(x)^(1/7) )dx=−∫_0 ^1 x^a −x^(a+(1/5)) −x^(a+(1/7)) +x^(a+((12)/(35))) dx  K′(a)=−(1/(a+1))+(1/(a+(6/5)))+(1/(a+(8/7)))−(1/(a+((47)/(35))))  K(a)=log(((a+(6/5))/(a+1)).((a+(8/7))/(a+((47)/(35)))))+C  K(0)=0⇒C=log(((47)/(48)))  K(a)=log(((a+(6/5))/(a+1)).((a+(8/7))/(a+((47)/(35)))).((47)/(48)))
$$\mathcal{K}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{a}} \right)\left(\mathrm{1}−\sqrt[{\mathrm{5}}]{{x}}\right)\left(\mathrm{1}−\sqrt[{\mathrm{7}}]{{x}}\right)}{{log}\left({x}\right)}{dx} \\ $$$$\mathcal{K}'\left({a}\right)=−\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}} \left(\mathrm{1}−\sqrt[{\mathrm{5}}]{{x}}\right)\left(\mathrm{1}−\sqrt[{\mathrm{7}}]{{x}}\right){dx}=−\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}} −{x}^{{a}+\frac{\mathrm{1}}{\mathrm{5}}} −{x}^{{a}+\frac{\mathrm{1}}{\mathrm{7}}} +{x}^{{a}+\frac{\mathrm{12}}{\mathrm{35}}} {dx} \\ $$$$\mathcal{K}'\left({a}\right)=−\frac{\mathrm{1}}{{a}+\mathrm{1}}+\frac{\mathrm{1}}{{a}+\frac{\mathrm{6}}{\mathrm{5}}}+\frac{\mathrm{1}}{{a}+\frac{\mathrm{8}}{\mathrm{7}}}−\frac{\mathrm{1}}{{a}+\frac{\mathrm{47}}{\mathrm{35}}} \\ $$$$\mathcal{K}\left({a}\right)={log}\left(\frac{{a}+\frac{\mathrm{6}}{\mathrm{5}}}{{a}+\mathrm{1}}.\frac{{a}+\frac{\mathrm{8}}{\mathrm{7}}}{{a}+\frac{\mathrm{47}}{\mathrm{35}}}\right)+{C} \\ $$$$\mathcal{K}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow{C}={log}\left(\frac{\mathrm{47}}{\mathrm{48}}\right) \\ $$$$\mathcal{K}\left({a}\right)={log}\left(\frac{{a}+\frac{\mathrm{6}}{\mathrm{5}}}{{a}+\mathrm{1}}.\frac{{a}+\frac{\mathrm{8}}{\mathrm{7}}}{{a}+\frac{\mathrm{47}}{\mathrm{35}}}.\frac{\mathrm{47}}{\mathrm{48}}\right) \\ $$
Commented by mnjuly1970 last updated on 29/May/21
thank you so much...
$${thank}\:{you}\:{so}\:{much}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *